lunes, 26 de julio de 2010

Temas completos de quimica organica 2 unidad


INTRODUCCIÓN

Química Orgánica

Rama de la química en la que se estudian el carbono, sus compuestos y reacciones. Existe una amplia gama de sustancias (medicamentos, vitaminas, plásticos, fibras sintéticas y naturales, hidratos de carbono, proteínas y grasas) formadas por moléculas orgánicas. Los químicos orgánicos determinan la estructura de las moléculas orgánicas, estudian sus reacciones y desarrollan procedimientos para sintetizar compuestos orgánicos. Esta rama de la química ha afectado profundamente a la vida en el siglo XX: ha perfeccionado los materiales naturales y ha sintetizado sustancias naturales y artificiales que, a su vez, han mejorado la salud, han aumentado el bienestar y han favorecido la utilidad de casi todos los productos empleados en la actualidad.

La aparición de la química orgánica se asocia a menudo al descubrimiento, en 1828, por el químico alemán Friedrich Wöhler, de que la sustancia inorgánica cianato de amonio podía convertirse en urea, una sustancia orgánica que se encuentra en la orina de muchos animales. Antes de este descubrimiento, los químicos creían que para sintetizar sustancias orgánicas, era necesaria la intervención de lo que llamaban 'la fuerza vital', es decir, los organismos vivos. El experimento de Wöhler rompió la barrera entre sustancias orgánicas e inorgánicas. Los químicos modernos consideran compuestos orgánicos a aquéllos que contienen carbono y otros elementos (que pueden ser uno o más), siendo los más comunes: hidrógeno, oxígeno, nitrógeno, azufre y los halógenos. Por ello, en la actualidad, la química orgánica tiende a denominarse química del carbono.

Química orgánica

FÓRMULAS Y ENLACES QUÍMICOS

La fórmula molecular de un compuesto indica el número y el tipo de átomos contenidos en una molécula de esa sustancia. La fructosa, o azúcar de uva (C6H12O6), consiste en moléculas que contienen 6 átomos de carbono, 12 átomos de hidrógeno y 6 átomos de oxígeno. Como existen al menos otros 15 compuestos con esta misma fórmula molecular, para distinguir una molécula de otra, se utiliza una fórmula estructural que muestra la distribución espacial de los átomos:

Química orgánica

Ni siquiera un análisis que proporcione los porcentajes de carbono, hidrógeno y oxígeno, puede distinguir el C6H12O6 de la fructosa del C5H10O5 de la ribosa, otro azúcar con la misma proporción entre sus elementos (1:2:1).

Las fuerzas que mantienen unidos a los átomos en una molécula son los enlaces químicos. La capacidad del carbono para formar enlaces covalentes con otros átomos de carbono en largas cadenas y ciclos, distingue al carbono de los demás elementos. No se conocen otros elementos que formen cadenas con más de ocho átomos. Esta propiedad del carbono, y el hecho de que pueda formar hasta cuatro enlaces con otros átomos, explica el gran número de compuestos conocidos. Al menos un 80% de los 5 millones de compuestos químicos registrados a principios de la década de 1980 contenían carbono.

CLASIFICACIÓN Y NOMENCLATURA

Las consecuencias de las propiedades únicas del carbono se ponen de manifiesto en el tipo más sencillo de compuestos orgánicos, los hidrocarburos alifáticos o de cadena abierta.

Alcanos:

Química orgánica

El compuesto más sencillo de la serie de los alcanos es el metano, CH4. Los siguientes miembros de la serie son: etano (C2H6), propano (C3H8) y butano (C4H10); la fórmula general de cualquier miembro de esta familia es CnH2n+2. Para los compuestos que contienen más de cuatro átomos de carbono, se usan los prefijos numéricos griegos y el sufijo - ano: hexano, heptano, octano, y así sucesivamente.

Sin embargo, los nombres butano, pentano..., no especifican la estructura molecular. Por ejemplo, pueden escribirse dos fórmulas estructurales distintas para la fórmula molecular C4H10. Los compuestos con la misma fórmula molecular pero distinta fórmula estructural se llaman isómeros. En el caso del butano, los nombres usuales para los isómeros son el butano normal y el metilpropano (antiguamente isobutano). La urea y el cianato de amonio también son isómetros estructurales de fórmula molecular CH4 N2O.

Química orgánica

La fórmula C8H18 tiene 18 isómeros y la C20H42 tiene 366.319 isómeros teóricos. Por este motivo, cuando se descubren nuevos compuestos, los nombres poco sistemáticos o triviales usados comúnmente deben ceder su puesto a nombres sistemáticos que puedan utilizarse en todos los idiomas. La Unión Internacional de Química Pura y Aplicada (IUPAC) acordó en 1890 un sistema de nomenclatura, y lo ha revisado posteriormente en numerosas ocasiones para incorporar nuevos descubrimientos.

En el sistema de nomenclatura de la IUPAC, se numera la cadena más larga de átomos de carbono de forma que los números de las cadenas laterales proporcionen la suma menor. Las tres cadenas laterales del primer compuesto de la figura 4 están en los átomos de carbono 2, 2 y 4; si la cadena se numera en sentido opuesto, las cadenas laterales estarían en los átomos de carbono 2, 4 y 4. Por tanto, el nombre correcto es 2,2,4-trimetilpentano.

Química orgánica

Entre los hidrocarburos existen también estructuras cíclicas o ciclos, por ejemplo, la de la familia de los ciclanos o cicloalcanos; el ciclo menor contiene tres átomos de carbono. La fórmula general de los cicloalcanos es CnH2n, y los nombres de la IUPAC son consistentes con los de los alcanos.

Química orgánica

Alquenos y alquinos:

Los alquenos son isómeros de los cicloalcanos y se representan por la fórmula general CnH2n. Esta familia de hidrocarburos se caracteriza por contener uno o más dobles enlaces entre los átomos de carbono. Por ejemplo, el propeno y el ciclopropano son isómeros, igual que el 1,3-dimetilciclohexano y el 3,4-dimetil-2-hexeno. (La posición del doble enlace se indica con '2-hexeno'.) Los dobles enlaces también pueden presentarse en los compuestos cíclicos, por ejemplo, en el á-pineno, un componente de la trementina, y en la vitamina A.

Química orgánica

Química orgánica

Se suelen utilizar notaciones simbólicas para escribir las fórmulas estructurales de los compuestos orgánicos cíclicos. Los vértices de los ángulos de esas fórmulas representan átomos de carbono. Se sobreentiende que cada átomo de carbono está unido a 2, 1 o ningún átomo de hidrógeno, dependiendo de si tiene 2, 3 o 4 enlaces, respectivamente, con otros átomos (normalmente de carbono). Como ejemplo, ver en la figura 8 la fórmula estructural completa del á-pineno.

Química orgánica

Los alquinos o acetilenos, la tercera familia más importante de los hidrocarburos alifáticos, tienen la fórmula general CnH2n-2, y contienen aún menos átomos de hidrógeno que los alcanos o los alquenos. El acetileno, HC:CH, que es el ejemplo más común, se denomina etino en el sistema de la IUPAC.

Grupos funcionales:

En un alcano, los átomos de hidrógeno pueden ser sustituidos por otros átomos (de cloro, oxígeno o nitrógeno, por ejemplo), siempre que se respete el número correcto de enlaces químicos (el cloro forma un enlace sencillo con los otros átomos, el oxígeno forma dos enlaces y el nitrógeno forma tres). El átomo de cloro en el cloruro de etilo, el grupo OH en el alcohol etílico y el grupo NH2 en la etilamina se llaman grupos funcionales. Estos grupos funcionales determinan la mayoría de las propiedades químicas de los compuestos. En la tabla adjunta se muestran otros grupos funcionales con sus fórmulas generales, prefijos o sufijos que se añaden a los nombres, y un ejemplo de cada clase.

Química orgánica

Isómeros ópticos y geométricos:

La estructura tetraédrica de los enlaces del carbono dicta algunas propiedades de los compuestos orgánicos que sólo pueden explicarse por medio de las relaciones espaciales. Cuando cuatro grupos distintos de átomos están unidos a un átomo de carbono central, pueden construirse dos moléculas diferentes en el espacio. Por ejemplo, el ácido láctico (ver figura 9) existe en dos formas; este fenómeno es conocido como isomería óptica. Los isómeros ópticos o enantiómeros se relacionan del mismo modo que un objeto y su imagen en el espejo: el CH3 de uno refleja la posición del CH3 del otro, el OH refleja al OH..., al igual que un espejo colocado ante un guante de la mano derecha refleja la imagen de un guante de la mano izquierda.

Química orgánica

Química orgánica

Los isómeros ópticos tienen exactamente las mismas propiedades químicas y físicas, excepto una: el sentido en que cada isómero gira el plano de la luz polarizada. El ácido dextroláctico gira el plano de la luz polarizada a la derecha, y el ácido levoláctico a la izquierda. El ácido láctico racémico (una mezcla 1:1 de ácido dextroláctico y ácido levoláctico) presenta una rotación cero porque los giros hacia derecha e izquierda se cancelan mutuamente.

Los dobles enlaces en los compuestos del carbono dan lugar a la isomería geométrica (que no tiene relación con la isomería óptica) si cada carbono del doble enlace está unido a grupos distintos. Por ejemplo, una molécula de 2-hepteno puede estar distribuida en dos formas distintas en el espacio porque la rotación alrededor del doble enlace está restringida. Cuando los grupos iguales (átomos de hidrógeno en este caso) están en partes opuestas de los átomos de carbono unidos por el doble enlace, el isómero se llama trans y cuando los grupos iguales están en la misma parte, el isómero se llama cis.

Química orgánica

Saturación:

Los compuestos que contienen dobles o triples enlaces se llaman compuestos insaturados. Estos compuestos pueden experimentar reacciones de adición con varios reactivos que hacen que los dobles o triples enlaces sean sustituidos por enlaces simples. Las reacciones de adición convierten los compuestos insaturados en saturados. Aunque estos últimos son por lo general más estables que los insaturados, dos dobles enlaces en la misma molécula pueden producir menos inestabilidad si están separados por un enlace simple; a estos dobles enlaces se les llama conjugados. El isopreno, que es la base que forma el caucho (o hule) natural, tiene esta estructura conjugada, igual que la vitamina A y el retinal, compuestos importantes en el proceso de la visión.

Química orgánica

La conjugación completa en un ciclo de seis átomos de carbono tiene un efecto más profundo; su influencia estabilizadora es tan fuerte que el compuesto deja de actuar como insaturado. Es el caso del benceno, C6H6, y la familia de compuestos cíclicos denominados compuestos aromáticos. De hecho, las propiedades de estos compuestos son tan distintas, que el símbolo más apropiado para el benceno es el hexágono de la derecha de la figura 13, y no los otros dos. El círculo dentro del hexágono sugiere que los seis electrones representados como tres dobles enlaces conjugados pertenecen a todo el hexágono, y no a los carbonos individuales en los ángulos del hexágono. En la figura 14 se muestran también otros compuestos aromáticos.

Química orgánica

Química orgánica

Las moléculas cíclicas pueden contener átomos de elementos distintos al carbono; se llaman heteroátomos, y los más comunes son el azufre, el nitrógeno y el oxígeno, aunque se conocen otros como el boro, el fósforo y el selenio.

Química orgánica

FUENTES DE COMPUESTOS ORGÁNICOS

El alquitrán de hulla era antiguamente la única fuente de compuestos aromáticos y de algunos heterocíclicos. El petróleo era la fuente de compuestos alifáticos, contenidos en ciertas sustancias como la gasolina, el queroseno y el aceite lubricante. El gas natural suministraba metano y etino. Estas tres categorías de sustancias naturales siguen siendo las principales fuentes de compuestos orgánicos en la mayoría de los países. Sin embargo, cuando no se dispone de petróleo, una industria química puede funcionar a base de etino, que a su vez puede ser sintetizado a partir de la caliza y el carbón. Durante la II Guerra Mundial, Alemania tuvo que adoptar esa solución cuando le fueron cortadas las fuentes de petróleo y gas natural.

El azúcar de mesa procedente de la caña o la remolacha es el producto químico puro más abundante extraído de una fuente vegetal. Otras sustancias importantes derivadas de los vegetales son los hidratos de carbono (como la celulosa), los alcaloides, la cafeína y los aminoácidos. Los animales se alimentan de vegetales y de otros animales para sintetizar aminoácidos, proteínas, grasas e hidratos de carbono.

PROPIEDADES FÍSICAS DE LOS COMPUESTOS ORGÁNICOS

En general, los compuestos orgánicos covalentes se distinguen de los compuestos inorgánicos en que tienen puntos de fusión y ebullición más bajos. Por ejemplo, el compuesto iónico cloruro de sodio (NaCl) tiene un punto de fusión de unos 800 °C, pero el tetracloruro de carbono (CCl4), molécula estrictamente covalente, tiene un punto de fusión de 76,7 °C. Entre esas temperaturas se puede fijar arbitrariamente una línea de unos 300 °C para distinguir la mayoría de los compuestos covalentes de los iónicos. Gran parte de los compuestos orgánicos tienen los puntos de fusión y ebullición por debajo de los 300 °C, aunque existen excepciones. Por lo general, los compuestos orgánicos se disuelven en disolventes no polares (líquidos sin carga eléctrica localizada) como el octano o el tetracloruro de carbono, o en disolventes de baja polaridad, como los alcoholes, el ácido etanoico (ácido acético) y la propanona (acetona). Los compuestos orgánicos suelen ser insolubles en agua, un disolvente fuertemente polar.

Los hidrocarburos tienen densidades relativas bajas, con frecuencia alrededor de 0,8, pero los grupos funcionales pueden aumentar la densidad de los compuestos orgánicos. Sólo unos pocos compuestos orgánicos tienen densidades mayores de 1,2, y son generalmente aquéllos que contienen varios átomos de halógenos.

Los grupos funcionales capaces de formar enlaces de hidrógeno aumentan generalmente la viscosidad (resistencia a fluir). Por ejemplo, las viscosidades del etanol, 1,2-etanodiol (etilenglicol) y 1,2,3-propanotriol (glicerina) aumentan en ese orden. Estos compuestos contienen uno, dos y tres grupos OH respectivamente, que forman enlaces de hidrógeno fuertes.

CONCLUSIÓN

En conclusión gracias a esta rama de la Química, los entendidos han podido estudiar las moléculas orgánicas, sus reacciones y desarrollan procedimientos para la creación de nuevos y mejores compuestos orgánicos.

Los químicos han debido crear complicadas formulas para facilitarce la lectura de los átomos y así poder ver la distribución espacial de estos.

Los estudios realizados por los entendidos en esta rama han otorgado al mundo entero mejoras en la salud y han aumentado nuestro bienestar.



Alcano

El metano es el primer alcano

Los alcanos son hidrocarburos, es decir que tienen sólo átomos de carbono e hidrógeno. La fórmula general para alcanos alifáticos (de cadena lineal) es CnH2n+2, y para cicloalcanos es CnH2n. También reciben el nombre de hidrocarburos saturados.

Los alcanos al estar compuestos solo por átomos carbono e hidrógeno, no presentan funcionalización alguna, es decir, sin la presencia de grupos funcionales como el carbonilo (-CO), carboxilo (-COOH), amida (-CON=), etc. La relación C/H es de CnH2n+2 siendo n el número de átomos de carbono de la molécula, (como se verá después esto es válido para alcanos de cadena lineal y cadena ramificada pero no para alcanos cíclicos). Esto hace que su reactividad sea muy reducida en comparación con otros compuestos orgánicos, y es la causa de su nombre no sistemático: parafinas (del latín, poca afinidad). Todos los enlaces dentro de las moléculas de alcano son de tipo simple o sigma, es decir, covalentes por compartición de un par de electrones en un orbital s, por lo cual la estructura de un alcano sería de la forma:

Alkanes.svg

donde cada línea representa un enlace covalente. El alcano más sencillo es el metano con un solo átomo de carbono. Otros alcanos conocidos son el etano, propano y el butano con dos, tres y cuatro átomos de carbono respectivamente. A partir de cinco carbonos, los nombres se derivan de numerales griegos: pentano, hexano, heptano...

Artículo principal: Cicloalcano

Los alcanos cíclicos o cicloalcanos son, como su nombre indica hidrocarburos alcanos de cadena cíclica. En ellos la relación C/H es CnH2n). Sus características físicas son similares a las de los alcanos no cíclicos, pero sus características químicas difieren sensiblemente, especialmente aquellos de cadena mas corta, de estos siendo mas similares a las de los alquinos.

Los alcanos se obtienen mayoritariamente del petróleo, ya sea directamente o mediante cracking o pirólisis, esto es, rotura térmica de moléculas mayores. Son los productos base para la obtención de otros compuestos orgánicos. Estos son algunos ejemplos de alcanos: Algunos alcanos.JPG


La nomenclatura
IUPAC (forma sistemática de denominar a los compuestos) para los alcanos es el punto de partida para todo el sistema de nomenclatura. Se basa en identificar a las cadenas hidrocarbonadas. Las cadenas de hidrocarburos saturados lineales son nombradas sistemáticamente con un prefijo numérico griego que denota el número de átomos de carbono, y el sufijo "-ano".
Artículo principal:
Nomenclatura orgánica


Los 4 primeros reciben los nombres de metano etano, propano y butano

Nomenclatura de los 10 primeros alcanos lineales











Los nombres de los términos superiores de la serie son los siguientes, se indica sólo el número de átomos de carbono, a partir del carbono 21, 31, 41, 51,61,71,81,91,… empiezan con el prefijo hen y no un como el carbono 11


Nomenclatura de otros alcanos con mas carbonos










Nomenclatura de otros alcanos










REFERENCIAS


  • PETERSON, W.R. Formulación y Nomenclatura Quimica Orgánica, 6ta edición (en español), Barcelona-España: Eunibar-editorial universitaria de Barcelona.

]

Abundancia de los alcanos en el universo

El metano y el etano constituyen una parte importante en la composición de la atmósfera de Júpiter

Los alcanos son una parte importante de la atmósfera de los planetas gaseosos exteriores, como Júpiter (0,1% metano, 0,0002% etano), Saturno(0,2% metano, 0,0005% etano), Urano (1,99% metano, 0,00025% etano) y Neptuno (1,5% metano, 1,5ppm etano). Titán, un satélite de Saturno, fue estudiado por la sonda espacial Huygens, lo que indicó que la atmósfera de Titán llueve metano líquido a la superficie de la luna.1 También se observó en Titán un volcán que arrojaba metano, y se cree que este volcanismo es una fuente significativa de metano en la atmósfera. También parece ser que hay lagos de metano/etano cerca a las regiones polares nórdicas de Titán, como lo descubrió el sistema de imágenes por radar de la sonda Cassini. También se ha detectado metano y etano en la cola del cometa Hyakutake. El análisis químico mostró que la abundancia del etano y el metano son aproximadamente iguales, lo que se cree que implica que los hielos formados en el espacio interestelar, lejos del sol, podrían haberse evaporado en forma desigual debido a la diferente volatilidad de estas moléculas.2 También se ha detectado alcanos enmeteoritos tales como las condritas carbonáceas.


Abundancia de los alcanos en la Tierra

En la atmósfera hay trazas de gas metano (0,0001%), producido principalmente por organismos como Archaea, que se encuentra, por ejemplo, en el estómago de las vacas.

Extracción de petróleo, que contiene muchos hidrocarburos diferentes, incluyendo alcanos

La fuente comercial más importante para los alcanos es el gas natural y el petróleo.3 El gas natural contiene principalmente metano y etano, pero también algo de propano y butano: el petróleo es una mezcla de alcanos líquidos y otros hidrocarburos. Estos hidrocarburos se formaron cuando los animales marinos y plantas (zooplancton y fitoplancton) muertos y hundidos en el fondo de los mares antiguos y cubiertos con sedimentos en un medio wikt:anóxico y cubiertos por varios millones de años a alta temperatura y presión hasta su forma actual. El gas natural, por ejemplo, se puede obtener de la reacción siguiente:

C6H12O6 → 3CH4 + 3CO2

Estos hidrocarburos fueron absorbidos en rocas porosas, y se localizaron en una cápsula impermeable de roca y ahí quedaron atrapados. A diferencia del metano, que se reforma en grandes cantidades, los alcanos superiores (alcanos con 9 átomos de carbono o más) raras veces se producen en cantidades grandes en la naturaleza. Estos depósitos, por ejemplo, campos de petróleo, se han formado durante millones de años y una vez exhaustos no pueden ser reemplazados rápidamente. El agotamiento de estos hidrocarburos es la base para lo que se conoce comocrisis energética.

Los alcanos sólidos se conocen como alquitrán y se forman cuando los alcanos más volátiles, como los gases y el aceite, se evaporan de los depósitos de hidrocarburos. Uno de los depósitos más grandes de alcanos sólidos es en el lago de asfalto conocido como el lago Pitch enTrinidad y Tobago.

El metano también está presente en el denominado biogás, producido por los animales y materia en descomposición, que es una posible fuente renovable de energía.

Los alcanos tienen solubilidad baja en agua; sin embargo, a altas presiones y temperaturas bajas (tal como en el fondo de los océanos), el metano puede co-cristalizar con el agua para formar un hidrato de metano sólido. Aunque éste no puede ser explotado comercialmente ahora, la cantidad de energía combustible de los campos de hidrato de metano conocidos excede al contenido de energía de todos los depósitos de gas natural y petróleo juntos; el metano extraído del clatrato de metano es entonces considerado un candidato para combustibles futuros.


Abundancia biológica

Aunque los alcanos están presentes en la naturaleza de distintas formas, no están catalogados biológicamente como materiales esenciales. Hay cicloalcanos de tamaño de anillo entre 14 y 18 átomos de carbono en el musk, extraído de ciervos de la familia Moschidae. Toda la información adicional se refiere a los alcanos acíclicos.

Bacteria y archaea
Los organismos Archaea metanogénicaen el estómago de esta vaca son responsables de algo del metano en la atmósfera de la Tierra.

Ciertos tipos de bacteria pueden metabolizar a los alcanos: prefieren las cadenas de carbono de longitud par pues son más fáciles de degradar que las cadenas de longitud impar.

Por otro lado, ciertas archaea, los metanógenos, produce cantidades grandes de metano como producto del metabolismo del dióxido de carbono y otros compuestos orgánicos oxidados. La energía se libera por la oxidación del hidrógeno:

CO2 + 4H2 → CH4 + 2H2O

Los metanógenos también son los productores del gas de los pantanos en humedales, y liberan alrededor de dos mil millones de toneladas de metano por año—el contenido atmosférico de este gas es producido casi exclusivamente por ellos. La producción de metano del ganado y otrosherbívoros, que pueden liberar hasta 150 litros por día, y de las termitas también se debe a los metanógenos. También producen los alcanos más simples en el intestino de los humanos. Por tanto, las archaea metanogénicas están en el extremo del ciclo del carbono, con el carbono siendo liberado en la atmósfera después de haber sido fijado por la fotosíntesis. Es posible que nuestros actuales depósitos de gas natural se hayan formado en forma similar.

Hongos y plantas
El agua forma gotas sobre la película delgada de cera de alcanos en la cáscara de la manzana.

Los alcanos también juegan un rol, si bien es cierto menor, en la biología de los tres grupos de organismos eucariotas: hongos, plantas y animales. Algunas levaduras especializadas, como Candida tropicale, Pichia sp., Rhodotorula sp., pueden usar alcanos como una fuente de carbono o energía. El hongo Amorphotheca resinae prefiere los alcanos de cadena larga en las gasolinas de aviación, y puede causar serios problemas para los aviones en las regiones tropicales.

En las plantas, se encuentran alcanos sólidos de cadena larga; forman una capa firme de cera, la cutícula, sobre las áreas de las plantas expuestas al aire. Ésta protege a la planta de la pérdida de agua, a la vez que evita el leaching de minerales importantes por la lluvia. También es una protección contra las bacterias, hongos, e insectos dañinos— estos últimos se hunden con sus patas en la sustancia cerosa suave, y tienen movilidad dificultada. La capa brillante sobre las frutas, tales como las manzanas, consiste de alcanos de cadena larga. Las cadenas de carbono tienen generalmente entre veinte y treinta átomos de carbono de longitud, y las plantas las preparan a partir de los ácidos grasos. La composición exacta de la película de cera no sólo depende de la especie, sino que cambia con la estación y factores ambientales como las condiciones de iluminación, temperatura o humedad.

Animales

Los alcanos se encuentran en productos animales, aunque son menos importantes que los hidrocarburos insaturados. Un ejemplo es el aceite de hígado de tiburón, que es aproximadamente 14% pristano (2,6,10,14-tetrametilpentadecano, C19H40). Su abundancia es más significativa en las feromonas, materiales que fungen como mensajeros químicos, en los cuales se fundamenta casi toda la comunicación entre insectos. En algunos tipos, como el escarabajo Xylotrechus colonus, principalmente el pentacosano (C25H52), 3-metilpentaicosano (C26H54) y 9-metilpentaicosano (C26H54), se transfieren por contacto corporal. Con otras, como la mosca tsetse Glossina morsitans morsitans, la feromona contiene los cuatro alcanos 2-metilheptadecano (C18H38), 17,21-dimetilheptatriacontano (C39H80), 15,19-dimetilheptatriacontano (C39H80) y 15,19,23-trimetilheptatriacontano (C40H82), y actúa mediante el olfato en distancias grandes, una característica muy útil para el control de plagas.


Relaciones ecológicas

Ophrys sphegodes

Un ejemplo, en el que tanto los alcanos de plantas y animales juegan un rol, es la relación ecológica entre la abeja Andrena nigroaenea y la orquídea Ophrys sphegodes; la última depende para su polinización de la primera. Las abejas Andrena nigroaenea usan feromonas para identificar un compañero; en el caso de A. nigroaenea, las hembras emiten una mezcla de tricosano (C23H48), pentacosano (C25H52) y heptacosano(C27H56) en la proporción 3:3:1, y los machos son atraídos específicamente por este olor. La orquídea toma ventaja de este arreglo de apareamiento para hacer que las abejas macho recolecten y diseminen su polen; no sólo sus flores se parecen a dicha especie de abejas, sino que también producen grandes cantidades de los tres alcanos en la misma proporción que las abejas A. nigroaenea hembra. Como resultado, numerosos machos son atraídos a las flores e intentan copular con su compañera imaginaria; aunque este comportamiento no se corona con el éxito para la abeja, permite a la orquídea transferir su polen, que se dispersará con la partida del macho frustrado a otras florales.


Producción


Refinado del petróleo

La fuente más importante de alcanos es el gas natural y el petróleo crudo. Los alcanos son separados en una refinería de petróleo por destilación fraccionada y procesados en muchos productos diferentes.


Fischer-Tropsch

El proceso Fischer-Tropsch es un método para sintetizar hidrocarburos líquidos, incluyendo alcanos, a partir de monóxido de carbono ehidrógeno. Este método es usado para producir sustitutos para los destilados de petróleo.


Preparación en el laboratorio

Generalmente hay poca necesidad de sintetizar alcanos en el laboratorio, dado que suelen estar disponibles comercialmente. También debido al hecho de que los alcanos son, generalmente, poco reactivos química y biológicamente, y no sufren interconversiones limpias de grupos funcionales. Cuando se producen alcanos en el laboratorio, suele ser un subproducto de una reacción. Por ejemplo, el uso de n-butyllitio como una base produce el ácido conjugado, n-butano como subproducto:

C4H9Li + H2O → C4H10 + LiOH

Sin embargo, a veces puede ser deseable convertir una porción de una molécular en una estructura funcionalmente alcánica (grupo alquilo) usando un método como el de arriba o métodos similares. Por ejemplo, un grupo etilo es un grupo alquilo; cuando está unido a un grupo hidroxi, constituye el etanol, que no es un alcano. Para convertirlo en alcano, uno de los métodos más conocidos es la hidrogenación de alquenos.

RCH=CH2 + H2 → RCH2CH3 (R = alkyl)

Los alcanos o grupos alquilo pueden ser preparados directamente a partir de haloalcanos en la reacción de Corey-House-Posner-Whitesides. La deoxigenación de Barton-McCombie4 5elimina el grupo hidroxilo de los alcoholes, por ejemplo.

Barton-McCombie Deoxygenation Scheme.svg

y la reducción de Clemmensen6 7 8 9 elimina los grupos carbonilo de los aldehídos y cetonas para formar alcanos o compuestos de sustituidos de alquilo:

Clemmensen Reduction Scheme.png


Propiedades físicas


Punto de ebullición

Puntos de fusión (azul) y de ebullición (rosa) de los primeros 14 n-alcanos, en °C.

Los alcanos experimentan fuerzas intermoleculares de van der Waals y al presentarse mayores fuerzas de este tipo aumenta elpunto de ebullición.3

Hay dos agentes determinantes de la magnitud de las fuerzas de van der Waals:

  • el número de electrones que rodean a la molécula, que se incrementa con la masa molecular del alcano
  • el área superficial de la molécula

Bajo condiciones estándar, los alcanos desde el CH4 hasta el C4H10 son gases; desde el C5H12 hasta C17H36 son líquidos; y los posteriores a C18H38 son sólidos. Como el punto de ebullición de los alcanos está determinado principalmente por el peso, no debería sorprender que los puntos de ebullición tengan una relación casi lineal con la masa molecular de la molécula. Como regla rápida, el punto de ebullición se incrementa entre 20 y 30 °C por cada átomo de carbono agregado a la cadena; esta regla se aplica a otras series homólogas.

Un alcano de cadena lineal tendrá un mayor punto de ebullición que un alcano de cadena ramificada, debido a la mayor área de la superficie en contacto, con lo que hay mayores fuerzas de van der Waals, entre moléculas adyacentes. Por ejemplo, compárese elisobutano y el n-butano, que hierven a -12 y 0 °C, y el 2,2-dimetilbutano y 2,3-dimetilbutano que hierven a 50 y 58 °C, respectivamente. En el último caso, dos moléculas de 2,3-dimetilbutano pueden "encajar" mutuamente mejor que las moléculas de 2,2-dimetilbutano entre sí, con lo que hay mayores fuerzas de van der Waals.

Por otra parte, los cicloalcanos tienden a tener mayores puntos de ebullición que sus contrapartes lineales, debido a las conformaciones fijas de las moléculas, que proporcionan planos para el contacto intermolecular.


Punto de fusión

El punto de fusión de los alcanos sigue una tendencia similar al punto de ebullición por la misma razón que se explicó anteriormente. Esto es, (si todas las demás características se mantienen iguales), a molécula más grande corresponde mayor punto de fusión. Hay una diferencia significativa entre los puntos de fusión y los puntos de ebullición: los sólidos tienen una estructura más rígida y fija que los líquidos. Esta estructura rígida requiere energía para poder romperse durante la fusión. Entonces, las estructuras sólidas mejor construidas requerirán mayor energía para la fusión. Para los alcanos, esto puede verse en el gráfico anterior. Los alcanos de longitud impar tienen puntos de fusión ligeramente menores que los esperados, comparados con los alcanos de longitud par. Esto es debido a que los alcanos de longitud par se empacan bien en la fase sólida, formando una estructura bien organizada, que requiere mayor energía para romperse. Los alcanos de longitud impar se empacan con menor eficiencia, con lo que el empaquetamiento más desordenado requiere menos energía para romperse.10

Los puntos de fusión de los alcanos de cadena ramificada pueden ser mayores o menores que la de los alcanos de cadena lineal, dependiendo nuevamente de la habilidad del alcano en cuestión para empacarse bien en la fase sólida: esto es particularmente verdadero para los isoalcanos (isómeros 2-metil), que suelen tener mayores puntos de fusión que sus análogos lineale


Los alcanos son malos conductores de la electricidad y no se polarizan sustancialmente por un campo eléctrico.


Solubilidad en agua

No forman enlaces de hidrógeno y son insolubles en solventes polares como el agua. Puesto que los enlaces de hidrógeno entre las moléculas individuales de agua están apartados de una molécula de alcano, la coexistencia de un alcano y agua conduce a un incremento en el orden molecular (reducción de entropía). Como no hay enlaces significativos entre las moléculas de agua y las moléculas de alcano, la segunda ley de la termodinámica sugiere que esta reducción en la entropía se minimizaría al minimizar el contacto entre el alcano y el agua: se dice que los alcanos son hidrofóbicos (repelen el agua).


Su solubilidad en solventes no polares es relativamente buena, una propiedad que se denomina lipofilicidad. Por ejemplo, los diferentes alcanos son miscibles entre sí en todas las demas proporciones.


La densidad de los alcanos suele aumentar conforme aumenta el número de átomos de carbono, pero permanece inferior a la del agua. En consecuencia, los alcanos forman la capa superior en una mezcla de alcano-agua.


hibridación sp3 en el metano.

La estructura molecular de los alcanos afecta directamente sus características físicas y químicas. Se deriva de la configuración electrónica del carbono, que tiene cuatro electrones de valencia. Los átomos de carbono en los alcanos siempre tienen hibridación sp3, lo que quiere decir que los electrones de valencia están en cuatro orbitales equivalentes, derivados de la combinación del orbital 2s y los orbitales 2p. Estos orbitales, que tienen energías idénticas, están orientados espacialmente en la forma de un tetraedro, con un ángulo de cos−1(−⅓) ≈ 109.47° entre ellos.


Una molécula de alcano tiene sólo enlaces simples C – H y C – C. Los primeros resultan del traslape de un orbital sp3 del átomo de carbono con el orbital 1s de un átomo de hidrógeno; los últimos del traslape de dos orbitales sp3 en átomos de carbono diferentes. La longitud de enlace es de 1,09×10−10 m para un enlace C – H y 1,54×10−10 m para un enlace C – C.

Estructura tetraédrica del metano.

La disposición espacial de los enlaces es similar a la de cuatro orbitales sp3; están dispuestos tetraédricamente, con un ángulo de 109,48° entre ellos. La fórmula estructural que representa a los enlaces como si estuvieran en ángulos rectos unos con otros, aunque común y útil, no corresponde con la realidad.


La fórmula estructural y los ángulos de enlace no suelen ser suficientes para describir la geometría de una molécula. Hay un grado de libertad para cada enlace carbono – carbono: el ángulo de torsión entre los átomos o grupos unidos a los átomos a cada extremo de un enlace. El arreglo espacial descrito por los ángulos de torsión de la molécula se conoce como su conformación.

Proyecciones de Newman de las dos conformaciones límite del etano:: eclipsada a la izquierda, alternada a la derecha.

El etano constituye el caso más simple para el estudio de las conformaciones de los alcanos, dado que sólo hay un enlace C – C. Si se ve a lo largo del enlace C – C, se tendrá la denominada proyección de Newman. Los átomos de hidrógeno tanto en el átomo carbono anterior como en el átomo de carbono posterior tienen un ángulo de 120° entre ellos, resultante de la proyección de la base del tetraedro en una superficie plana. Sin embargo, el ángulo de torsión entre un átomo de hidrógeno dado del carbono anterior y un átomo de hidrógeno dado del carbono posterior puede variar libremente entre 0° y 360°. Esto es una consecuencia de la rotación libre alrededor del enlace carbono – carbono. A pesar de esta aparente libertad, sólo hay dos conformaciones limitantes importantes: conformación eclipsada y conformación alternada.

Las dos conformaciones, también conocidas como rotámeros, difieren en energía: la conformación alternada es 12,6 kJ/mol menor en energía (por tanto, más estable) que la conformación eclipsada (menos estable).

La diferencia en energía entre las dos conformaciones, conocida como la energía torsional es baja comparada con la energía térmica de una molécula de etano a temperatura ambiente. Hay rotación constante alrededor del enlace C-C. El tiempo tomado para que una molécula de etano pase de la conformación alternada a la siguiente, equivalente a la rotación de un grupo CH3 en 120° relativo a otro, es del orden de 10−11 segundos.

El caso de alcanos mayores es más complejo, pero se basa en los mismos principios, con la conformación antiperiplanar siendo más favorecida alrededor de cada enlace carbono-carbono. Por esta razón, los alcanos suelen mostrar una disposición en zigzag en los diagramas o en los modelos. La estructura real siempre diferirá en algo de estas formas idealizadas, debido a que las diferencias en energía entre las conformaciones son pequeñas comparadas con la energía térmica de las moléculas: las moléculas de alcano no tienen una forma estructura fija, aunquelos modelos así lo sugieran.

NOMBREFórmulaB.P./oCM.P./oCDensidad/g cm -3(20oC)
MetanoCH4-162-183gas
EtanoC2H6-89-172gas
PropanoC3H8-42-188gas
ButanoC4H10-0.5-135gas
PentanoC5H1236-1300.626
HexanoC6H1469-950.659
HeptanoC7H1698-910.684
OctanoC8H18126-570.703
NonanoC9H20151-540.718
DecanoC10H22174-300.730
UndecanoC11H24196-260.740
DodecanoC12H26216-100.749
TriacontanoC30H6234337sólido


Propiedades espectroscópicas

Prácticamente todos los compuestos orgánicos contienen enlaces carbono – carbono y carbono – hidrógeno, con lo que muestran algunas características de los alcanos en sus espectros. Los alcanos se distinguen por no tener otros grupos y, por tanto, por la "ausencia" de otras características espectroscópicas.



Espectroscopía NMR

La resonancia del protón de los alcanos suele encontrarse en δH = 0.5 – 1.5. La resonancia del carbono-13 depende del número de átomos de hidrógeno unidos al carbono: δC = 8 – 30 (primario, metilo, -CH3), 15 – 55 (secundario, metileno, -CH2-), 20 – 60 (terciario, metino, C-H) y cuaternario. La resonancia de carbono-13 de los átomos de carbono cuaternarios es característicamente débil, debido a la falta de efecto nuclear Overhauser y el largo tiempo de relajación, y puede faltar en muestras débiles, o en muestras que no han sido corridas un tiempo lo suficientemente largo.






























































































































































































Espectrometría de masas

Los alcanos tienen una alta energía de ionización, y el ion molecular es generalmente débil. El patrón de fragmentación puede ser difícil de interpretar, pero, en el caso de los alcanos de cadena ramificada, la cadena carbonada se rompe preferentemente en los átomos de carbono terciarios y cuaternarios, debido a la relativa estabilidad de los radicales libres resultantes. El fragmento resultante de la pérdida de sólo un grupo metilo (M-15) suele estar ausente, y otros fragmentos suelen estar espaciados a intervalos de catorce unidades de masa, correspondiendo a la pérdida secuencial de grupos CH2.


Propiedades químicas

En general, los alcanos muestran una reactividad relativamente baja, porque sus enlaces de carbono son relativamente estables y no pueden ser fácilmente rotos. A diferencia de muchos otros compuestos orgánicos, no tienen grupo funcional.

Sólo reaccionan muy pobremente con sustancias iónicas o polares. La constante de acidez para los alcanos tiene valores inferiores a 60, en consecuencia son prácticamente inertes a los ácidos y bases. Su inercia es la fuente del término parafinas (que significa "falto de afinidad"). En el petróleo crudo, las moléculas de alcanos permanecen químicamente sin cambios por millones de años.

Sin embargo, es posible reacciones redox de los alcanos, en particular con el oxígeno y los halógenos, puesto que los átomos de carbono están en una condición fuertemente reducida; en el caso del metano, se alcanza el menor estado de oxidación posible para el carbono (-4). La reacción con el oxígeno conduce a la combustión sin humo; con los halógenos, a la reacción de sustitución. Además, los alcanos interactúan con, y se unen a, ciertos complejos de metales de transición (ver: activación del enlace carbono-hidrógeno).

Los radicales libres, moléculas con un número impar de electrones, juegan un papel importante en la mayoría de reacciones de los alcanos, tales como el cracking y el reformado, donde los alcanos de cadena larga se convierten en alcanos de cadena corta, y los alcanos de cadena lineal en los isómeros ramificados, respectivamente.

En los alcanos altamente ramificados, el ángulo de enlace puede diferir significativamente del valor óptimo (109,47°) para permitir a los diferentes grupos suficiente espacio. Esto origina una tensión en la molécula conocida como impedimento estérico, y puede aumentar sustancialmente la reactividad.


Reacciones con oxígeno

Todos los alcanos reaccionan con oxígeno en una reacción de combustión, si bien se torna más difícil de inflamar al aumentar el número de átomos de carbono. La ecuación general para la combustión completa es:

CnH2n+2 + (1,5n+0,5)O2 → (n+1)H2O + nCO2

En ausencia de oxígeno suficiente, puede formarse monóxido de carbono o inclusive negro de humo, como se muestra a continuación:

CnH(2n+2) + ½ nO2 → (n+1)H2 + nCO

por ejemplo metano:

CH4 + 2O2 → CO2 + 2H2O
CH4 + O2 → C + 2H2O

Ver tabla de calor de formación de alcanos para información detallada. El cambio de entalpía estándar de combustión, ΔcHo, para los alcanos se incrementa aproximadamente en 650 kJ/mol por cada grupo CH2 en una serie homóloga. Los alcanos de cadena ramificada tienen menores valores de ΔcHo que los alcanos de cadena lineal del mismo número de átomos de carbono, por lo que pueden ser vistos como algo más estables.


Reacciones con halógenos

Artículo principal: Halogenación radicalaria

Los alcanos reaccionan con halógenos en la denominada reacción de halogenación radicalaria. Los átomos de hidrógeno del alcano son reemplazados progresivamente por átomos de halógeno. Los radicales libres son las especies que participan en la reacción, que generalmente conduce a una mezcla de productos. La reacción es altamente exotérmica, y puede resultar en una explosión.

Estas reacciones son una importante ruta industrial para los hidrocarburos halogenados.

Los experimentos han mostrado que toda halogenación produce una mezcla de todos los isómeros posibles, indicando que todos los átomos de hidrógeno son susceptibles de reaccionar. Sin embargo, la mezcla producida no es una mezcla estadística: los átomos de hidrógeno secundarios y terciarios son reemplazados preferentemente debido a la mayor estabilidad de los radicales secundarios y terciarios. Un ejemplo puede verse en la monobromación del propano:3

Monobromination of propane.png


Cracking

El cracking rompe moléculas grandes en unidades más pequeñas, Esta operación puede realizarse con un método térmico o un método catalítico. El proceso de cracking térmico sigue unmecanismo de reacción homolítico con formación de radicales libres. El proceso de cracking catalítico involucra la presencia de un catalizador ácido (generalmente ácidos sólidos comosilica-alúmina y zeolitas), que promueven la heterólisis (ruptura asimétrica) de los enlaces, produciendo pares de iones de cargas opuestas, generalmente un carbocatión y el anión hidruro, que es muy inestable. Los radicales libres de alquilo y los carbocationes son altamente inestables, y sufren procesos de reordenamiento de la cadena, y la escisión del enlace C-C en la posición beta, además de transferencias de hidrógeno o hidruro intramolecular y extramolecular. En ambos tipos de procesos, los reactivos intermediarios (radicales, iones) se regeneran permanentemente, por lo que proceden por un mecanismo de autopropagación en cadena. Eventualmente, la cadena de reacciones termina en una recombinación de iones o radicales.


Isomerización y reformado

La isomerización y reformado son procesos en los que los alcanos de cadena lineal son calentados en presencia de un catalizador de platino. En la isomerización, los alcanos se convierten en sus isómeros de cadena ramificada. En el reformado, los alcanos se convierten en sus formas cíclicas o en hidrocarburos aromáticos, liberando hidrógeno como subproducto. Ambos procesos elevan el índice de octano de la sustancia.


Otras reacciones

Los alcanos reaccionan con vapor en presencia de un catalizador de níquel para producir hidrógeno. Los alcanos pueden ser clorosulfonados y nitrados, aunque ambas reacciones requieren condiciones especiales. La fermentación de los alcanos a ácidos carboxílicos es de importancia técnica. En la reacción de Reed, el dióxido de azufre y cloro convierten a los hidrocarburos en cloruros de sulfonilo, en un proceso inducido por luz.

[editar]Aplicaciones

Las aplicaciones de los alcanos pueden ser determinadas bastante bien de acuerdo al número de átomos de carbono. Los cuatro primeros alcanos son usados principalmente para propósitos de calefacción y cocina, y en algunos países para generación de electricidad. El metano y el etano son los principales componentes del gas natural; pueden ser almacenados como gases bajo presión. Sin embargo, es más fácil transportarlos como líquidos: esto requiere tanto la compresión como el enfriamiento del gas.

El propano y el butano pueden ser líquidos a presiones moderadamente bajas y son conocidos como gases licuados del petróleo (GLP). Por ejemplo, el propano se usa en el quemador de gas propano, el butano en los encendedores descartables de cigarrillos. Estos dos alcanos son usados también como propelentes en pulverizadores.

Desde el pentano hasta el octano, los alcanos son líquidos razonablemente volátiles. Se usan como combustibles en motores de combustión interna, puesto que pueden vaporizarse rápidamente al entrar en la cámara de combustión, sin formar gotas, que romperían la uniformidad de la combustión. Se prefieren los alcanos de cadena ramificada, puesto que son menos susceptibles a la ignición prematura, que causa el cascabeleo en los motores, que sus análogos de cadena lineal. Esta propensión a la ignición prematura es medida por el índice de octanodel combustible, donde el 2,2,4-trimetilpentano (isooctano) tiene un valor arbitrario de 100, y heptano tiene un valor de cero. Además de su uso como combustibles, los alcanos medios son buenos solventes para las sustancias no polares.

Los alcanos desde el nonano hasta, dígase, el hexadecano (un alcano con dieciséis átomos de carbono) son líquidos de alta viscosidad, cada vez menos aptos para su uso en gasolinas. Por el contrario, forman la mayor parte del diésel y combustible de aviones. Los combustibles diésel están caracterizados por su índice de cetano (el cetano es un nombre antiguo para el hexadecano). Sin embargo, el alto punto de fusión de estos alcanos puede causar problemas a bajas temperaturas y en regiones polares, donde el combustible se vuelve demasiado espeso para fluir adecuadamente.

Los alcanos a partir del hexadecano en adelante constituyen los componentes más importantes del aceite combustible y aceite lubricante. La función de los últimos es también actuar como agentes anticorrosivos, puesto que su naturaleza hidrofóbica implica que el agua no puede llegar a la superficie del metal. Muchos alcanos sólidos encuentran uso como cera de parafina, por ejemplo en vela. Ésta no debe confundirse con la verdadera cera, que consiste principalmente de ésteres.

Los alcanos con una longitud de cadena de aproximadamente 35 o más átomos de carbono se encuentran en el betún, que se usa, por ejemplo, para asfaltar los caminos. Sin embargo, los alcanos superiores tienen poco valor, y se suelen romper en alcanos menores mediante cracking.

Algunos polímeros sintéticos tales como el polietileno y el polipropileno son alcanos con cadenas que contienen cientos de miles de átomos de carbono. Estos materiales se usan en innumerables aplicaciones, y se fabrican y usan millones de toneladas de estos materiales al año.


ALQUINOS

Los alquinos son hidrocarburos que se caracterizan por poseer un grupo funcional del tipo triple enlace carbono-carbono. La fórmula general de los alquinos es CnH2n-2. El acetileno, H-CºC-H, que es el alquino más simple, , fue ampliamente usado en la industria como materia prima para la elaboración de acetaldehído, ácido acético, cloruro de vinilo y otros productos químicos, pero ahora son más comunes otros procesos más eficientes en los que se usa etileno como materia prima.

Los átomos de carbono de los alquinos tienen hibridación sp, y el triple enlace está formado por un enlace sigma (s) sp-sp y dos pi (p) p-p. Existen relativamente pocos métodos generales para la síntesis de alquinos. En éste capítulo comentaremos algo acerca de su estructura, preparación y reacciones de los mismos.

ALQUINOS.

Un triple enlace carbono-carbono resulta de la superposición de dos átomos de carbono con hidridación sp. Recuérdese que los orbitales híbridos sp del carbono adoptan un ángulo de 180º entre sí, a lo largo de un eje perpendicular a los ejes de los dos orbitales no híbridos 2py y 2pz. Cuando dos carbonos con hibridación sp se aproximan uno a otro para enlazarse, la configuración geométrica es adecuada para que se forme un enlace s sp-sp y dos enlaces p p-p; es decir, un triple enlace. De este modo el acetileno, C2H2, es una molécula lineal con ángulos de enlace H-C-C de 180º.

Formación de un triple enlace carbono-carbono por superposición de dos carbonos con hibridación sp.

Los alquinos tienen puntos de ebullición muy similares a los de los correspondientes alcanos y alquenos. El etino (acetileno) es singular por el hecho de no tener punto de ebullición a presión atmosférica: sublima a -84 ºC. El propino (p.e. -23.2 ºC) y el 1-butino (p.e. 8.1 ºC) son gases, mientras que el 2-butino es prácticamente líquido (p.e. 27 ºC) a temperatura ambiente. Los alquinos de tamaño medio son líquidos destilables.

Por analogía con los alquenos, el relativo carácter s de los orbitales híbridos del carbono de los alquinos sustituidos se traduce en la presencia de momentos dipolares, excepto en el caso en que los sustituyentes se encuentren distribuidos de forma totalmente simétrica.

m = 0.74 D

m = 0.80 D

m = 0 D

Por las mismas razones, los alquinos terminales son más ácidos que los alcanos o alquenos homólogos. El pKa del etino, por ejemplo, es de 25, marcadamente bajo comparado con los del eteno (pKa = 44) y del etano (pKa = 50).

Hidridación: sp sp2 sp3

pKa: 25 44 50.

RESUMEN DE LAS REACCIONES DE LOS ALQUINOS

1.- Formación de alquinos

(a) Deshidrohalogenación de dihalogenuros vecinales

Ejemplos:

2,3-dibromo-pentano 2-pentino

2-cloro-2-buteno 2-butino

(b) Alquilación del ion acetiluro

Acetileno Un alquino terminal

Un Alquino terminal Un alquino interno

Ejemplos:

Acetileno

1-butino

2.- Reacciones de los alquinos

(a) Adición de HX, donde X = Br o Cl

Ejemplos:

1-butino 2-bromo-2-buteno

1-butino 1-bromo-1-buteno

(b) Adición de X2, donde X = Br o Cl

Ejemplos:

1-butino 1,2-dibromo-1-buteno

1-butino 1,1,2,2,-tertrabromopentano

(c) Hidratación catalizada por sulfato mercúrico

Una metil cetona

Ejemplos:

1-butino butanona

2-pentino 2-pentanona 3-pentanona

(d) Hidrobaración-oxidación

Ejemplos:

1-butino butanal

1-ciclopentiletino 2-ciclopentiletanal

(e) Reducción

1.- Por hidrogenación catalítica

Un alqueno cis

Ejemplos:

1-ciclopentilpropino propilciclopentano

1-ciclopentilpropino cis-1-ciclopentilpropeno

2.- Por litio en amoniaco

Un alqueno trans

Ejemplo:

1-ciclopentilpropino trans-1-ciclopentilpropeno

(f) Acidez: conversión en aniones acetiluro

Ejemplos:

(g) Alquilación de aniones acetiluro

Acetileno Un alquino terminal

Un Alquino terminal Un alquino interno

Ejemplos: (véase alquilación del ion acetiluro)

h) Ruptura oxidativa

Ejemplos:

2-butino ácido acético

2-pentino ácido acético ácido propanoico

FORMACIÓN DE ALQUINOS: REACCIONES DE ELIMINACIÓN DE DIHALOGENUROS.

Los alquinos pueden obtenerse por eliminación de HX a partir de halogenuros de alquilo de manera muy parecida a como se obtenían los alquenos. Sin embargo, dado que un alquino está doblemente insaturado, es necesario eliminar dos moléculas de HX. El tratamiento de un 1,2-dihalogenuro (un dihalogenuro vecinal) con un exceso de base fuerte, como KOH o NaOH, da como resultado una doble eliminación, mediante un mecanismo E2.

Los dihalogenuros vecinales requeridos se obtienen fácilmente por adición de bromo o cloro a los alquenos. De este modo, la secuencia global de halogenació-deshidrohalogenación constituye un muy buen método par transformar un alqueno en un alquino. Si bien es posible utilizar distintas bases para la deshidrohalogenación, normalmente se prefiere el amiduro sódico, NaNH2, porque suele tener mayores rendimientos. La doble deshidrohalogenación ocurre en pasos bien diferenciados a través de un halogenuro vinílico intermedio, lo cual sugiere que los halogenuros vinílicos mismos se conviertan en alquinos cuando se tratan con bases fuertes.

Ejemplo:

REACCIONES DE ALQUINOS: ADICIÓN DE HX Y X2.

Como regla general, los reactivos electrófilos se unen a los alquinos del mismo modo que a los alquenos. Por ejemplo, con HX, los alquinos forman los productos de adición esperados. Aunque usualmente las reacciones pueden detenerse después de la adición de un equivalente de HX, un exceso de ácido forma un dihalogenuro. Por ejemplo, la reacción de 1-hexino con dos equivalentes de HBr produce el 2,2-dibromohexano. La regioquímica de la adición sigue la regla de Markovnikov. El halógeno se une al carbono más sustituido del triple enlace, y el hidrógeno lo hace al menos sustituido. La mayoría de las veces se encuentra en el producto la estereoquímica trans de H y X. Esto indica un mecanismo similar a los de los alquenos es decir vía carbocatión. En este caso el intermedio formado es un carbocatión vinílico.

Un alquino Un carbocatión vinílico Un bromuro vinílico

Ejemplo:

1-Pentino 2-Bromo-1-pentino 2,2-Dibromopentano

Bromo y cloro también se unen a los alquinos para formar productos de adición, y también en este caso resulta una estereoquímica trans. La adición es similar a la de los alquenos.

Ejemplo:

1-Butino (E)-1,2-Dibromo-1-buteno 1,1,2,2-Tetrabromobutano

HIDRATACIÓN DE ALQUINOS.

Los alquinos pueden adicionar agua en analogía con la hidratación de alquenos. La adición va en el sentido Markovnikov para dar enoles que tautomerizan a cetonas. La reacción esta catalizada por los iones mercurio. Los alquinos simétricos internos dan solamente un compuesto carbonílico; los no simétricos conducen a mezclas de productos.

Ejemplos:

3-Hexino Único producto (80%)

2-Pentino (50%) (50%)

(91%)

1-Pentino 2-Pentanona (78%)

Los tautómeros son tipos especiales de isómeros que se interconvierten con rapidez por medio de un equilibrio, llamado ceto-enolico.

Tautómero enol Tautómero ceto

(meno favorecido) (más favorecido).

Mecanismo de la hidratación de un alquino catalizada por ion mercúrico para formar una cetona. La reacción produce un enol intermediario que rápidamente se tautomeriza para convertirse en una cetona.

Una cetona Un enol

HIDROBORACIÓN DE ALQUINOS.

Los alquinos terminales pueden reaccionar con borano, aunque en la práctica es difícil detener la reacción en el paso del borano vinílico. En circunstancias normales, experimentan una segunda adición al borano vinílico intermedio. Para evitar esta doble adición puede usarse un borano voluminoso estéricamente impedido, como el bis-(1,2-dimetilpropil)borano (que se conoce comúnmente como disiamilborano) en lugar del borano normal (BH3). Cuando un alquino terminal reacciona con disiamilborano, ocurre la adición de B-H al triple enlace C-C con la regioquímica anti Markovnikov esperada. Sin embargo, una segunda adición es bastante lenta, puesto que el volumen estérico del reactivo dialqilborano dificulta el acercamiento al doble enlace. Por lo tanto, la oxidación del borano vinílico forma primero un enol y finalmente un aldehído.

Ejemplo:

Obsérvese que la secuencia de hidroboración-oxidación es complementaria de la reacción de hidratación directa de alquinos, ya que resultan productos diferentes. La hidratación directa de un alquino terminal con ácido acuoso y sulfato mercúrico produce una metil cetona, mientras que la hidroboración-oxidación del mismo alquino forma un aldehído:

REDUCCIÓN DE ALQUINOS.

Los alquinos pueden hidrogenarse en las mismas condiciones empleadas para hidrogenar alquenos. Por lo general, el platino o el paladio sobre carbón se colocan en suspensión en una solución que contiene al alquino, y la mezcla se pone en contacto con una atmósfera de hidrógeno. En estas condiciones se produce la completa saturación del triple enlace.

Ejemplos

5-Decino Decano (96%)

4-Metoxi-1-butino 1-Metoxibutano (100%)

La hidrogenación es un proceso por pasos, lo cual permite en ciertos casos detener la reacción a nivel del alqueno intermedio. Otra alternativa es evitar la hidrogenación del alqueno a base de emplear catalizadores modificados. Uno de tales sistemas es paladio precipitado sobre carbonato cálcico y tratado con acetato de plomo y quinoleína, y se conoce como catalizar Lindlar[1] . La superficie del metal en el catalizador de Lindlar adopta una configuración menos activa que la del paladio sobre carbón, de forma que solamente el primer enlace p del alquino, más reactivo, es hidrogenado. Al tratarse de una adiciónsin, constituye un método de síntesis estereoselectiva de alqueno cis.

Ejemplo:

1-Decino cis-5-Deceno (96%)

Un segundo método para la conversión de alquinos en alquenos es emplear sodio o litio metálico en amoniaco líquido como disolvente. Este método es complementario al de la reducción de Lindlar, puesto que con él se producen alquenos trans en vez de alquenos cis. El mecanismo en sí implica la donación de un electrón al triple enlace para producir un anión radical intermedio (tiene número impar de electrones) como un anión (tiene carga negativa). Este intermediario acepta un protón del amoniaco para formar un radical vinílico. La adición de un segundo electrón al radical vinílico produce un anión vinílico, el cual toma un segundo protón del amoniaco para formar el alqueno trans como producto.

Ejemplo:

5-Decino trans-5-Deceno (78%)

ACIDEZ DE LOS ALQUINOS: FORMACIÓN DE ANIONES ACETILURO.

La diferencia más notable entre la química de los alquenos y la de los alquinos es que los alquinos terminales son débilmente ácidos. Cuando un alquino terminal se trata con una base fuerte, como el amiduro sódico, NaNH2, el hidrógeno terminal es eliminado y se forma un anión acetiluro:

Anión Acetiluro

ALQUILACIÓN DE ANIONES ACETILURO.

La presencia de un par de electrones no compartidos hace que los aniones acetiluro sean fuertemente nucleófilos. Como resultado, cuando están disueltos en tetrahidrofurano estos aniones reaccionan con halogenuros de alquilo, para sustituir el halógeno y formar un nuevo alquino como producto.

La alquilación de alquinos no se limita al ion acetiluro. Cualquier alquino terminal puede convertirse en un anión acetiluro correspondiente y alquilarse por tratamiento con un halogenuro de alquilo para formar un alquino interno. Debido a su generalidad, la alquilación de acetiluros es el mejor método para formar alquinos sustituidos a partir de precursores más simples. La alquilación de iones acetiluro se limita al uso de bromuros y yoduros de alquilo primarios, RCH2X, por razones estéricas, dado que son sustituciones nucleófilicas del tipo SN2. Además de su reactividad como nucleófilos, los iones acetiluro son suficientemente fuertes para causar deshidrohalogenación en vez de sustitución cuando reaccionan con halogenuros de alquilo secundarios o terciarios.

Ejemplos:

1-Hexino 5-Decino (75%)

Propino 2-Butino (75%)

1-Pentinilciclohexano (85%)

RUPTURA OXIDATIVA DE ALQUINOS.

Los alquinos, como los alquenos, pueden romperse por reacción con agentes oxidantes fuertes, como el permanganato de potasio u ozono. Sin embargo, un triple enlace suele ser menos reactivo que un doble enlace, y los rendimientos de los productos de ruptura algunas veces son bajos. La reacción es demasiado compleja mecanísticamente para ser tratada con detalles. Los productos que se obtienen son ácidos carboxílicos. Si se oxida un alquino terminal se forma CO2 como uno de los productos.

Ejemplos:

3-Hexino Ácido propanoico (2 moles)

.







Radical alquilo

Radical metilo

Un radical alquilo (antes llamado radical libre alquilo) es una entidad molecular inestable derivado de un alcano que ha perdido un átomo de hidrógeno y ha quedado con un electrón desapareado o impar, siendo por ello muy inestable.1 El radical formado está centrado sobre el átomo de carbono, es decir, el electrón desapareado está localizado sobre dicho átomo,por poseer mayor densidad de espín.2 El electrón desapareado se muestra como un punto en los diagramas ofórmulas estructurales.

Si dicho grupo de átomos se encuentra dentro de una molécula mayor y no está formalmente separado de ella, se llama grupo alquilo.

Contenido

[ocultar]


Síntesis

Se forman por ruptura homopolar, generalmente producida por altas temperaturas (termólisis o pirólisis), o por irradiación con luz ultravioleta (fotólisis).

Es muy frecuente su formación en reacciones radicalarias a partir de otros radicales, como la halogenación radicalaria que produce haluros de alquilo a partir de alcanos y halógenos.


Reactividad

Los radicales alquilo tienen gran reactividad y su vida media es muy corta. Un ejemplo es el radical metilo, CH3·, procedente del metano, CH4, cuando pierde un átomo de hidrógeno, o de la ruptura homopolar de otros compuestos orgánicos.

Aunque su vida media en estado aislado es muy breve, permiten explicar el mecanismo de reacción de muchos procesos en Química orgánica y Bioquímica.




Alqueno

El alqueno más simple de todos es eleteno o etileno.

Los alquenos u olefinas son hidrocarburos insaturados que tienen uno o varios dobles enlaces carbono-carbono en su molécula. Se puede decir que un alqueno no es más que un alcano que ha perdido dos átomos de hidrógeno produciendo como resultado un enlace doble entre dos carbonos. Los alquenos cíclicos reciben el nombre de cicloalquenos.

Contenido

[ocultar]

[editar]Producción de alquenos

Aunque muchos se obtienen a partir del petróleo, por destilación industrial en refinerías, también es muy importante la producción de olefinas a nivel industrial.

[editar]Formulación y nomenclatura de alquenos

La fórmula general de un alqueno de cadena abierta con un sólo doble enlace es CnH2n. Por cada doble enlace adicional habrá dos átomos de hidrógeno menos de los indicados en dicha fórmula.

[editar]Nombres tradicionales

Al igual que ocurre con otros compuestos orgánicos, algunos alquenos se conocen todavía por sus nombres no sistemáticos, en cuyo caso se sustituye la terminación -eno sistemática por-ileno, como es el caso del eteno que en ocasiones se llama etileno, o propeno por propileno.

[editar]Nomenclatura sistemática (IUPAC)

1. Nombrar al hidrocarburo principal: Se ha de encontrar la cadena carbonada más larga que contenga el enlace doble, no necesariamente la de mayor tamaño, colocando los localizadores que tengan el menor número en los enlaces dobles, numerando los átomos de carbono en la cadena comenzando en el extremo más cercano al enlace doble. NOTA: Si al enumerar de izquierda a derecha como de derecha a izquierda, los localizadores de las insaturaciones son iguales, se busca que los dobles enlaces tenga menor posición o localizador más bajo.

2. Si la cadena principal tiene sustituyentes iguales en el mismo átomo de carbono separando por comas los números localizadores que se repiten en el átomo, estos se separan por un guión de los prefijos: Di, Tri, Tetra, etc. Respectivamente al número de veces que se repita el sustituyente.

3. Los sustituyentes se escriben de acuerdo al orden alfabético con su respectivo localizador.

4. Si en la cadena principal existen varios sustituyentes ramificados iguales se coloca el número localizador en la cadena principal separando por un guión, y se escribe el prefijo correspondiente al número de veces que se repita con los prefijos: Bis, Tris, Tetraquis, Pentaquis, etc. Seguido de un paréntesis dentro de cual se nombra al sustituyente complejo con la terminación -IL

5. Realizado todo lo anterior con relación a los sustituyentes, se coloca el número de localizador del doble enlace en la cadena principal separada de un guión, seguido del nombre de acuerdo al número de átomos de carbono reemplazando la terminación -ano por el sufijo -eno.

6. Si se presentan más de un enlace doble, se nombra indicando la posición de cada uno de los dobles enlaces con su respectivo número localizador, se escribe la raíz del nombre del alqueno del cual proviene, seguido de un prefijo de cantidad: di, tri, tetra, etc. y utilizando el sufijo -eno. Ej:-dieno, -trieno y así sucesivamente.

FórmulaRecomendaciones IUPAC-1979Recomendaciones IUPAC-19931 2
localizador - prefijo de número átomos C (acabado en -eno)prefijo de número átomos C - localizador -eno
CH3-CH2-CH=CH21-butenobut-1-eno

Nomenclatura alquenos.JPG

[editar]Estructura electrónica del enlace doble C=C

Utilizaremos el eteno como ejemplo de compuesto con doble enlace C=C. El doble enlace tiene dos componentes: el enlace tipo σ y el enlace tipo π. Los dos átomos de carbono que comparten el enlace tienen una hibridación sp2, hibridación resultante de la mezcla de un orbital 2s y dos orbitales 2p, lo cual conduce a la formación de tres orbitales sp2 de geometría trigonal plana. Al combinarse estos orbitales sp2 los electrones compartidos forman un enlace σ, situado entre ambos carbonos.

Orbitales pi alquenos a.png Orbitales pi alquenos b.png

En la primera figura puede observarse el radical metilo, con un orbital sp2 que enlaza a un átomo de hidrógeno al carbono. En la segunda figura se aprecia la formación del enlace π (línea depuntos); que se forma mediante el solapamiento de los dos orbitales 2p perpendiculares al plano de la molécula. En este tipo de enlace los electrones están deslocalizados alrededor de los carbonos, por encima y por debajo del plano molecular.

[editar]Energía de enlace

Energéticamente, el doble enlace se forma mediante la edición de dos tipos de enlace, el σ y el π. La energía de dichos enlaces se obtiene a partir del cálculo del solapamiento de los dos orbitales constituyentes, y en este caso el solapamiento de los orbitales sp2 es mucho mayor que los orbitales p (el primero crea el enlace σ y el segundo el π) y por tanto la componente σ es bastante más energética que la π. La razón de ello es que la densidad de los electrones en el enlace π están más alejados del núcleo del átomo. Sin embargo, a pesar de que el enlace π es más débil que el σ, la combinación de ambos hace que un doble enlace sea más fuerte que un enlace simple.

El que el doble enlace sea rígido (en contraposición al enlace simple, formado por un solo enlace σ, que puede rotar libremente a lo largo de su eje) se debe a la presencia de los orbitales π, así, para que exista una rotación, es necesario romper los enlaces π y volver a formarlos. La energía necesaria para romper estos enlaces no es demasiado elevada, del orden de los 65 kcal·mol-1, lo cual corresponde a temperaturas de entre 400 y 500 °C. Esto significa que por debajo de estas temperaturas los dobles enlaces permanecen rígidos y, por lo tanto, la molécula es configuracionalmente estable, pero por encima el enlace π puede romperse y volverse a formar y aparece una rotación libre.


Síntesis

Los alquenos se pueden sintetizar de una de cuatro reacciones:

Deshidrohalogenación
CH3CH2Br + KOH → CH2=CH2 + H2O + KBr
Deshidratación
La eliminación de agua a partir de alcoholes, por ejemplo:
CH3CH2OH + H2SO4 → CH3CH2OSO3H + H2O → H2C=CH2 + H2SO4 + H2O
También por la reacción de Chugaev y la reacción de Grieco.
Deshalogenación
BrCH2CH2Br + Zn → CH2=CH2 + ZnBr2
Pirólisis (con calor)
CH3(CH2)4 → CH2=CH2 + CH3CH2CH2CH3

Síntesis de alquenos.JPG

[Propiedades físicas

La presencia del doble enlace modifica ligeramente las propiedades físicas de los alquenos frente a los alcanos. De ellas, la temperatura de ebullición es la que menos se modifica. La presencia del doble enlace se nota más en aspectos como la polaridad y la acidez.


Polaridad

Dependiendo de la estructura, puede aparecer un momento dipolar débil. El enlace alquilo-alquenilo está polarizado en la dirección del átomo con orbital sp2, ya que la componente s de un orbital sp2 es mayor que en un sp3 (esto podría interpretarse como la proporción de s a p en la molécula, siendo 1:2 en sp2 y 1:3 en sp3, aunque dicha idea es simplemente intuitiva). Esto es debido a que los electrones situados en orbitales híbridos con mayor componente s están más ligados al núcleo que los p, por tanto el orbital sp2 es ligeramente atrayente de electrones y aparece una polarización neta hacia él. Una vez que tenemos polaridad en el enlace neta, la geometría de la molécula debe permitir que aparezca un momento dipolar neto en la molécula, como se aprecia en la figura inferior. Polaridad alquenos.png

'La primera molécula' es cis y tenemos un momento dipolar neto, pero la segunda trans, pese a tener dos enlaces ligeramente polarizados el momento dipolar neto es nulo al anularse ambos momentos dipolares.


Acidez

El carbono alquenílico tiene mayor acidez frente a los alcanos, debido también a la polaridad del enlace. Así, el etano (alcano) tiene un pKa de 50 (ó un Ka de 10-50) frente al pKa = 44 deleteno. Este hecho se explica fácilmente considerando que, al desprenderse un electrón de la molécula, queda una carga negativa remanente que en el caso del eteno se deslocaliza más fácilmente en el enlace π y σ que en el enlace σ simple que existe en un alcano. De todas formas, su acidez es menor que la de los alcoholes o los ácidos carboxílicos.


Reacciones

Los alquenos son más reactivos que los alcanos. Sus reacciones características son las de adición de otras moléculas, como haluros de hidrógeno, hidrógeno y halógenos. También sufren reacciones de polimerización, muy importantes industrialmente.

  1. Hidrohalogenación: se refiere a la reacción con haluros de hidrógeno formando alcanos halogenados del modo CH3CH2=CH2 + HX → CH3CHXCH3. Por ejemplo, halogenación con elácido HBr: AlkeneAndHBrReaction.png

Estas reacciones deben seguir la Regla de Markownikoff de enlaces dobles.

  1. Hidrogenación: se refiere a la hidrogenación catalítica (usando Pt, Pd, o Ni) formando alcanos del modo CH2=CH2 + H2 → CH3CH3.
  2. Halogenación: se refiere a la reacción con halógenos (representados por la X) del modo CH2=CH2 + X2XCH2CH2X. Por ejemplo, halogenación con bromo:

AlkeneAndBr2Reaction.png

  1. Polimerización: Forman polímeros del modo n CH2=CH2 → (-CH2-CH2-)n polímero, (polietileno en este caso


No hay comentarios:

Publicar un comentario