lunes, 26 de julio de 2010

FUERZAS INTRAMOLECULARES Y MAS

FUERZAS INTRAMOLECULARES

Las fuerzas intermoleculares se producen cuando los átomos pueden formar unidades estables llamadas moléculas mediante el compartimiento de electrones. Las fuerzas intermoleculares, fuerzas de atracción entre moléculas a veces también reciben el nombre de enlaces intermoleculares aunque son considerablemente más débiles que los enlaces iónicos, covalentes y metálicos. Las principales fuerzas intermoleculares son:

Enlace de hidrógeno

El enlace de hidrógeno ocurre cuando un átomo de hidrógeno es enlazado a un átomo fuertemente electronegativo como el nitrógeno, el oxígeno o el flúor. El átomo de hidrógeno posee una carga positiva parcial y puede interactuar con otros átomos electronegativos en otra molécula (nuevamente, con N, O o F). Así mismo, se produce un cierto solapamiento entre el H y el átomo con que se enlaza (N, O o F) dado el pequeño tamaño de estas especies. Por otra parte, cuanto mayor sea la diferencia de electronegatividad entre el H y el átomo interactuante, más fuerte será el enlace. Fruto de estos presupuestos obtenemos un orden creciente de intensidad del enlace de hidrógeno: el formado con el F será de mayor intensidad que el formado con el O, y éste a su vez será más intenso que el formado con el N. Estos fenómenos resultan en una interacción estabilizante que mantiene ambas moléculas unidas. Un ejemplo claro del enlace de hidrógeno es el agua:

Los enlaces de hidrógeno se encuentran en toda la naturaleza. Proveen al agua de sus propiedades particulares, las cuales permiten el desarrollo de la vida en la Tierra. Los enlaces de hidrógeno proveen también la fuerza intermolecular que mantiene unidas ambas hebras en una molécula de ADN.

Es un tipo especial de interacción dipolo-dipolo entre el átomo de hidrógeno que está formando un enlace polar, tal como N—H, O—H, ó F—H, y un átomo electronegativo como O, N ó F. Esta interacción se representa de la forma siguiente:

A—H•••B A—H•••A

A y B representan O, N ó F; A—H es una molécula o parte de una molécula y B es parte de otra. La línea de puntos representa el enlace de hidrógeno.

La energía media de un enlace de hidrógeno es bastante grande para ser una interacción dipolo-dipolo (mayor de 40 KJ/mol). Esto hace que el enlace de hidrógeno sea una de gran importancia a la hora de la adopción de determinadas estructuras y en las propiedades de muchos compuestos.

Las primeras evidencias de la existencia de este tipo de interacción vinieron del estudio de los puntos de ebullición. Normalmente, los puntos de ebullición de compuestos que contienen a elementos del mismo grupo aumentan con el peso molecular. Pero, como se puede observar en la figura, los compuestos de los elementos de los Grupos 15, 16 y 17 no siguen esta norma. Para cada uno de los grupos, los compuestos de menos peso molecular (NH3, H2O, HF) tienen el punto de ebullición más alto, en contra de lo que se podría esperar en principio. Ello es debido a que existe algún tipo de interacción entre las moléculas en estado líquido que se opone al paso al estado de vapor. Esa interacción es el enlace de hidrógeno, y afecta a los primeros miembros de la serie pues son los más electronegativos, y por ello el enlace X-H es el más polarizado, lo que induce la mayor interacción por puente de hidrógeno. Los puentes de hidrógeno son especialmente fuertes entre las moléculas de agua y son la causa de muchas de las singulares propiedades de esta sustancia. Los compuestos de hidrógeno de elementos vecino al oxígeno y de los miembros de su familia en la tabla periódica, son gases a la temperatura ambiente: CH4, NH3, H2S, H2Te, PH3, HCl. En cambio, el H2O es líquida a la temperatura ambiente, lo que indica un alto grado de atracción intermolecular. En la figura se puede ver que el punto de ebullición del agua es 200 °C más alto de lo que cabría predecir si no hubiera puentes de hidrógeno. Los puentes de hidrógeno juegan también un papel crucial en la estructura del ADN, la molécula que almacena la herencia genética de todos los seres vivos[cita requerida].

Fuerza de Van der Waals

También conocidas como fuerzas de dispersión, de London o fuerzas dipolo-transitivas, se presentan en todas las sustancias moleculares. Éstas involucran la atracción entre dipolos temporalmente inducidos en moléculas no polares. Esta polarización puede ser inducida tanto por una molécula polar o por la repulsión de nubes electrónicas con cargas negativas en moléculas no polares. Un ejemplo del primer caso es el cloro disuelto por que son puras puntas (-) (+)


[dipolo permanente] H-O-H----Cl-Cl [dipolo transitivo]


Un ejemplo del segundo caso se encuentra en la molécula de cloro:

(+) (-) (+) (-)

[dipolo transitivo] Cl-Cl----Cl-Cl [dipolo transitivo]

Atracciones dipolo-dipolo

Una atracción dipolo-dipolo es una interacción no covalente entre dos moléculas polares o dos grupos polares de la misma molécula si ésta es grande. En la sección anterior explicamos cómo se forman moléculas que contienen dipolos permanentes cuando se enlazan simétricamente con átomos con electronegatividad diferente. Las moléculas que son dipolos se atraen entre sí cuando la región positiva de una está cerca de la región negativa de la otra.

En un líquido las moléculas están muy cercanas entre sí y se atraen por sus fuerzas intermoleculares. Las moléculas deben tener suficiente energía para vencer esas fuerzas de atracción, y hacer que el líquido pueda entrar en ebullición. Si se requiere más energía para vencer las atracciones de las moléculas del líquido A que aquéllas entre las moléculas del líquido B, el punto de ebullición de A es más alto que el de B. Recíprocamente, menores atracciones intermoleculares dan pie a puntos de ebullición más bajos.

Las atracciones dipolo-dipolo, también conocidas como Keeson, por Willem Hendrik Keesom, quien produjo su primera descripción matemática en 1921, son las fuerzas que ocurren entre dos moléculas con dipolos permanentes. Estas funcionan de forma similar a las interacciones iónicas, pero son más débiles debido a que poseen solamente cargas parciales. Un ejemplo de esto puede ser visto en el ácido clorhídrico:

(+)(-) (+)(-)

H-Cl----H-Cl

(-)(+) (-)(+)

Cl-H----Cl-HO

Interacciones iónicas

Son interacciones que ocurren a nivel de catión-anión, entre distintas moléculas cargadas, y que por lo mismo tenderán a formar una unión electrostática entre los extremos de cargas opuestas debido a la atracción entre ellas.

Un ejemplo claro de esto, es por ejemplo lo que ocurre entre los extremos Carboxilo ( − COO ) y Amino  (-NH_3^+) de un aminoácido, péptido, polipéptido o proteína con otro.

Fuerzas de London o de dispersión

Las fuerzas de London se presentan en todas las sustancias moleculares. Son el resultado de la atracción entre los extremos positivo y negativo de dipolos inducidos en moléculas adyacentes.

Cuando los electrones de una molécula adquieren momentáneamente una distribución no uniforme, provocan que en una molécula vecina se forme momentáneamente un dipolo inducido. En la figura 4 se ilustra cómo una molécula con una falta de uniformidad momentánea en la distribución de su carga eléctrica puede inducir un dipolo en una molécula vecina por un proceso llamado polarización.

Incluso los átomos de los gases nobles, las moléculas de gases diatómicos como el oxígeno, el nitrógeno y el cloro (que deben ser no polares) y las moléculas de hidrocarburos no polares como el CH4, C2H6 tienen tales dipolos instantáneos.

La intensidad de las fuerzas de London depende de la facilidad con que se polarizan los electrones de una molécula, y eso depende del número de electrones en la molécula y de la fuerza con que los sujeta la atracción nuclear. En general, cuantos más electrones haya en una molécula más fácilmente podrá polarizarse. Así, las moléculas más grandes con muchos electrones son relativamente polarizables. En contraste, las moléculas más pequeñas son menos polarizables porque tienen menos electrones. Las fuerzas de London varían entre aproximadamente 0.05 y 40 kJ/mol.

Figura 4. Origen de las fuerzas de London.

Cuando examinamos los puntos de ebullición de varios grupos de moléculas no polares pronto se hace evidente el efecto del número de electrones (Tabla 2). Este efecto también se correlaciona con la masa molar: cuanto más pesado es un átomo o molécula más electrones tiene: Resulta interesante que la forma molecular también puede desempeñar un papel en la formación de las fuerzas de London.

Dos de los isómeros del pentano –el pentano de cadena lineal y el 2,2-dimetilpropano (ambos con la fórmula molecular C5H12)- difieren en su punto de ebullición en 27 °C. La forma lineal de la molécula de n-pentano, por su linealidad, permite un contacto estrecho con las moléculas adyacentes, mientras que la molécula de 2,2-dimetilpropano, más esférica no permite ese contacto.

Tabla 2. Efecto del número de electrones sobre el punto de ebullición de sustancias no polares

Gases nobles Halógenos Hidrocarburos

NºElec P.A P.E.°C NºElec P.M P.E.°C NºElec P.M P.E.°C

He 2 4 -269 F2 18 38 -188 CH4 10 16 -161 Ne 10 20 -246 Cl2 34 71 -34 C2H6 18 30 -88 Ar 18 40 -186 Br2 70 160 59 C3H8 26 44 -42 Kr 36 84 -152 I2 106 254 184 C4H10 34 58 0

Fuerzas ion-dipolo

Estas son interacciones que ocurren entre especies con carga. Las cargas similares se repelen, mientras que las opuestas se atraen.

Es la fuerza que existe entre un ion y una molécula polar neutra que posee un momento dipolar permanente. las moléculas polares son dipolos: tienen un extremo positivo y un extremo negativo. Los iones positivos son atraídos al extremo negativo de un dipolo, en tanto que los iones negativos son atraídos al extremo positivo.estas tienen enlaces entre sí

La magnitud de la energía de la interacción depende de la carga sobre el ion (Q), el momento dipolar del dipolo (µ), y de la distancia del centro del ion al punto medio del dipolo (d).

Las fuerzas ion-dipolo son importantes en las soluciones de las sustancias iónicas en líquidos.

Véase también

  • Otra fuerzas de atracción:
    • fuerza de adhesión: son las fuerzas que se establacen entre moléculas de cuerpos diferentes.
    • fuerza de atracción: es la fuerza que hace que las moléculas se unan.
    • fuerzas de cohesion: son las fuerzas que se establecen entre molécula de cuerpos iguales.
    • tensión superficial: en la fuerza que se establece en superficies liquidas que permiten la flotabilidad a algunos cuerpos.
    • fuerza de repulsión: son las fuerzas que hacen que las moléculas se repelen, ose que se alejen.
  • Estados de la materia
  • Polímero
  • Cohesión del terreno
  • Sibachi-Garu

Obtenido de "http://es.wikipedia.org/wiki/Fuerza_intermolecular"



El puente de hidrógeno es un enlace que se establece entre moléculas capaces de generar cargas parciales. El agua, es la sustancia en donde los puentes de hidrógeno son más efectivos, en su molécula, los electrones que intervienen en sus enlaces, están más cerca del oxígeno que de los hidrógenos y por esto se generan dos cargas parciales negativas en el extremo donde está el oxígeno y dos cargas parciales positivas en el extremo donde se encuentran los hidrógenos. La presencia de cargas parciales positivas y negativas hace que las moléculas de agua se comporten como imanes en los que las partes con carga parcial positiva atraen a las partes con cargas parciales negativas. De tal suerte que una sola molécula de agua puede unirse a otras 4 moléculas de agua a través de 4 puentes de hidrógeno. Esta característica es la que hace al agua un líquido muy especial.

Puentes de Hidrógeno en el agua.

Los puentes de Hidrógeno, se forman por átomos de Hidrógeno localizados entre átomos electronegativos. Cuando un átomo de Hidrógeno está unido covalentemente, a una átomo electronegativo, ej. Oxígeno o Nitrógeno, asume una densidad (d) de carga positiva, debido a la elevada electronegatividad del átomo vecino. Esta deficiencia parcial en electrones, hace a los átomos de Hidrógeno susceptibles de atracción por los electrones no compartidos en los átomos de Oxígeno o Nitrógeno

Obsérvese la configuración electrónica del Oxígeno:

8O 1s2 2s2 2pxêé pyé pzé

de ahí que:

d+ d+

d-

d+ d+

d-

Figura: configuración electrónica del Oxígeno

el puente de Hidrógeno es relativamente débil entre -20 y -30 kJ mol-1, la fuerza de enlace aumenta al aumentar la electronegatividad y disminuye con el tamaño de los átomos participantes. Por tanto, el puente de Hidrógeno existe en numerosas moléculas no solo en el agua. Aquí solo se tratará lo referente al agua.

La estructura del agua favorece las interacciones para formar puentes de Hidrógeno, el arreglo siempre es perpendicular entre las moléculas participantes, además, es favorecido por que cada protón unido a un Oxígeno muy electronegativo encuentra un electrón no compartido con el que interactúa uno a uno. De lo anterior se concluye que cada átomo d Oxígeno en el agua interacciona con 4 protones, dos de ellos unidoscovalentemente y dos a través de puentes de Hidrógeno.


colineales

Figura: Información sobre los puentes de Hidrógeno

Estudios de difracción de rayos X indican que la distancia entre los átomos de Oxígeno que intervienen en el puente de Hidrógeno, están separados por 0.28 nm lo que indica un arreglo tetraédrico de las moléculas de agua, además los puentes de Hidrógeno:


TETRAHEDRO

Figura: representación de una molécula tetraédrica del agua.

La colinealidad de los puentes es muy importante, un alejamiento de 10° ocasiona la que el puente se rompa.

Linnus Pauling postuló a partir de observaciones de las transiciones moleculares (i.e. el movimiento de los átomos con respecto a aquellos a los que están unidos) de los átomos participantes en la molécula D2O (el deuterio forma parte de la pléyade de Hidrógeno), que el puente de Hidrógeno es la interacción más importante que juega un papel crítico no solo en la estructura del agua sino en la estructura y función de las macromoléculas biológicas.



Un enlace de hidrógeno es la fuerza atractiva entre un átomoelectronegativo y un átomo de hidrógenounido covalentementea otro átomo electronegativo. Resulta de la formación de unafuerza dipolo-dipolocon un átomo de hidrógeno unido a un átomo de nitrógeno,oxígeno o flúor (de ahí el nombre de "enlace de hidrógeno", que no debe confundirse con un enlace covalente a átomos de hidrógeno). La energía de un enlace de hidrógeno (típicamente de 5 a 30 kJ/mol) es comparable a la de los enlaces covalentes débiles (155 kJ/mol), y un enlace covalente típico es sólo 20 veces más fuerte que un enlace de hidrógeno intermolecular. Estos enlaces pueden ocurrir entre moléculas (intermolecularidad), o entre diferentes partes de una misma molécula (intramolecularidad).2 El enlace de hidrógeno es una fuerza de van der Waalsdipolo-dipolo fija muy fuerte, pero más débil que el enlace covalente o el enlace iónico. El enlace de hidrógeno está en algún lugar intermedio entre un enlace covalente y una simple atracción electrostática intermolecular. Este tipo de enlace ocurre tanto en moléculas inorgánicas tales como el agua, y enmoléculas orgánicas como el ADN.

El enlace de hidrógeno intermolecular es responsable del punto de ebulliciónalto del agua (100°C). Esto es debido al fuerte enlace de hidrógeno, en contraste a los otros hidruros de calcógenos. El enlace de hidrógeno intramolecular es responsable parcialmente de la estructura secundaria,estructura terciaria y estructura cuaternaria de las proteínas y ácidos nucleicos.


Un átomo de hidrógeno unido a un átomo relativamente electronegativo es un átomo donante del enlace de hidrógeno. Este átomo electronegativo suele serflúor, oxígeno o nitrógeno. Un átomo electronegativo tal como el flúor, oxígeno o nitrógeno es un aceptor de enlace de hidrógeno, sin importar si está enlazado covalentemente o no a un átomo de hidrógeno. Un ejemplo de un donante de enlace de hidrógeno es el etanol, que tiene un átomo de hidrógeno enlazado covalentemente al oxígeno; un ejemplo de aceptor de enlace de hidrógeno que no tiene un átomo de hidrógeno enlazado covalentemente a él es el átomo de oxígeno en el éter dietílico.



Enlace

Ejemplos de grupos donantes de enlace de hidrógeno, y grupos aceptores de enlace de hidrógeno
Los ácidos carboxílicos suelen formar dímeros en la fase de vapor

El carbono también puede participar en enlaces de hidrógeno, cuando el átomo de carbono está enlazado a algunos átomos electronegativos, como en el caso decloroformo, CHCl3. El átomo electronegativo atrae la nube electrónica alrededor del núcleo de hidrógeno y, al decentralizar la nube, deja al átomo con una carga positiva parcial. Debido al pequeño tamaño del hidrógeno en comparación a otros átomos y moléculas, la carga resultante, aunque sólo parcial, no representa una gran densidad de carga. Un enlace de hidrógeno resulta cuando esta densidad de carga positiva fuerte atrae a un par libre de electrones de otroheteroátomo, que se convierte en elaceptor de enlace de hidrógeno.

El enlace de hidrógeno suele ser descrito como una interacción electrostática dipolo-dipolo. Sin embargo, también tiene algunas características del enlace covalente: es direccional, fuerte, produce distancias interatómicas menores que la suma de los radios de van der Waals, y usualmente involucra un número limitado de compañeros de interacción, que puede ser interpretado como un tipo de valencia. Estas características covalentes son más significativas cuando los aceptores se unen a átomos de hidrógeno de donantes más electronegativos.

La naturaleza parcialmente covalente de un enlace de hidrógeno da origen a las preguntas: "¿A qué molécula pertenece el núcleo de hidrógeno?" y "¿Cuál debería ser etiquetado como 'donante' y cuál como 'aceptor'?" Generalmente, es fácil determinar esto basándose simplemente en las distancias interatómicas del sistema X—H...Y: típicamente, la distancia X—H es ~1.1 Å, mientras que la distancia H...Y es ~ 1.6 a 2.0 Å. Los líquidos que muestran enlace de hidrógeno se llaman líquidos asociativos.

Los enlaces de hidrógeno pueden variar en fuerza, desde muy débiles (1-2 kJ mol−1) a extremadamente fuertes (>155 kJ mol−1), como en el ion HF2. Algunos valores típicos incluyen:

  • F—H...F (155 kJ/mol)
  • O—H...N (29 kJ/mol)
  • O—H...O (21 kJ/mol)
  • N—H...N (13 kJ/mol)
  • N—H...O (8 kJ/mol)
  • HO—H...:OH3+ (18 kJ/mol5 ) (Información obtenida usando dinámica molecular como se detalla en la referencia, y debería ser comparada con 7.9 kJ/mol para agua en bruto, obtenida también usando la mismadinámica molecular.)

La longitud de los enlaces de hidrógeno depende de la fuerza del enlace, temperatura, y presión. La fuerza del enlace misma es dependiente de la temperatura, presión, ángulo de enlace y ambiente (generalmente caracterizado por la constante dieléctrica local). La longitud típica de un enlace de hidrógeno en agua es 1.97 Å (197 pm). El ángulo de enlace ideal depende de la naturaleza del donante del enlace de hidrógeno. Los resultados experimentales del donante fluoruro de hidrógeno con diversos aceptores muestran los siguientes ángulos:

Aceptor···DonanteSimetría TREPEVÁngulo (°)
HCN···HFlineal180
H2CO ··· HFtrigonal plana110
H2O ··· HFpiramidal46
H2S ··· HFpiramidal89
SO2 ··· HFtrigonal plana145

[editar]Historia

En su libro The Nature of the Chemical Bond (en español: La Naturaleza del Enlace Químico), Linus Pauling concede los créditos a T.S. Moore y T.F. Winmill de la primera mención del enlace de hidrógeno, en 1912 (J. Chem. Soc. 101, 1635). Moore y Winmill usaron el enlace de hidrógeno para justificar el hecho que el hidróxido de trimetilamonio es una base más débil que elhidróxido de tetrametilamonio. La descripción del enlace de hidrógeno en su forma más conocida, en el agua, vino algunos años después, en 1920, por Latimer y Rodebush (JACS, 42, 1419).

Enlaces de hidrógeno en el agua

Captura de una simulación de agua líquida. Las líneas entrecortadas de la molécula en el centro del cuadro representan enlaces de hidrógeno.

El ejemplo de enlace de hidrógeno más ubicuo,y quizás el más simple, se encuentra entre las moléculas de agua. En una molécula discreta de agua, el agua contiene dos átomos de hidrógeno y un átomo de oxígeno. Dos moléculas de aguapueden formar un enlace de hidrógeno entre ellas; en el caso más simple, cuando sólo dos moléculas están presentes, se llama dímero de agua y se usa frecuentemente como un sistema modelo. Cuando más moléculas están presentes, como en el caso del agua líquida, más enlaces son posibles, debido a que el oxígeno de una molécula de agua tiene dos pares libres de electrones, cada uno de los cuales puede formar un enlace de hidrógeno con átomos de hidrógeno de otras dos moléculas de agua. Esto puede repetirse, de tal forma que cada molécula de agua está unida mediante enlaces de hidrógeno a hasta cuatro otras moléculas de agua, como se muestra en la figura (dos a través de sus pares libres, y dos a través de sus átomos de hidrógeno).

El elevado punto de ebullición del agua se debe al alto número de enlaces de hidrógeno que cada molécula tiene, en relación a su baja masa molecular, y a la gran fuerza de estos enlaces de hidrógeno. En realidad, el agua tiene puntos de ebullición, fusión y viscosidad muy altos, comparados con otras sustancias no unidas entre sí por enlaces de hidrógeno. La razón para estos atributos en la inhabilidad, o dificultad, para romper estos enlaces. El agua es única porque sus átomos de oxígeno tiene dos pares libres y dos átomos de hidrógeno, significando que el número total de enlaces de una molécula de agua es cuatro. Por ejemplo, el fluoruro de hidrógeno -que tiene tres pares libres en el átomo de flúor, pero sólo un átomo de hidrógeno- puede tener un total de sólo dos; el amoníaco tiene el problema opuesto: tres átomos de hidrógeno, pero sólo un par libre.

H-F...H-F...H-F

El número exacto de enlaces de hidrógeno en los que una molécula en el agua líquida participa fluctúa con el tiempo, y depende de la temperatura. A partir de simulaciones de agua líquida TIP4P a 25°C, se estima que cada molécula de agua participa en un promedio de 3.59 enlaces de hidrógeno. A 100°C, este número disminuye a 3.24, debido al incremento en el movimiento molecular y consecuente densidad disminuida, mientras que a 0°C, el número promedio de enlaces de hidrógeno se incrementa a 3.69. Un estudio más reciente encontró un número mucho menor de enlaces de hidrógeno: 2,357 a 25°C. Las diferencias pueden deberse al uso de un método diferente para definir y contar enlaces de hidrógeno.

Donde las fuerzas de enlace son más equivalentes, se podría encontrar los átomos de dos moléculas de agua partidas en dos iones poliatómicos de carga opuesta, específicamente hidróxido (OH) e hidronio (H3O+). (Los iones hidronio también son conocidos como iones 'hidroxonio').

H-O H3O+

Sin embargo, en agua pura bajo condiciones normales de presión y temperatura, esta última formulación es aplicable sólo raramente; en promedio aproximadamente una en cada 5,5 × 108 moléculas cede un protón a otra molécula de agua, en concordancia con la constante de disociación para el agua bajo tales condiciones. Es una parte crucial de la unicidad del agua.


Enlaces de hidrógeno bifurcados y sobrecoordinados en el agua

Puede darse que un solo átomo de hidrógeno participe en dos enlaces de hidrógeno, en vez de en uno. Este tipo de enlace es denominado "bifurcardo". Se ha sugerido que el enlace de hidrógeno bifurcado es un paso esencial en la reorientación del agua;.

Los aceptores de enlaces de hidrógeno (que terminan en los pares libres del átomo de oxígeno) son más propensos a formar la bifurcación (en efecto, se le denomina oxígeno sobrecoordinado) que los donantes.


Enlaces de hidrógeno en ADN y proteínas

Enlace de hidrógeno entre guanina ycitosina, uno de los dos tipos de pares de bases en el ADN.

El enlace de hidrógeno también juega un rol importante en la determinación de las estructuras tridimensionales adoptadas por las proteínas y ácidos nucleicos. En estas macromoléculas, el enlace de hidrógeno entre partes de la misma molécula ocasiona que se doble en una forma específica, que ayuda a determinar el rol fisiológico o bioquímico de la molécula. Por ejemplo, la estructura de doble hélice del ADN se debe primordialmente a los enlaces de hidrógeno entre lospares de bases, que unen una cadena complementaria a la otra y permiten lareplicación.

En las proteínas, los enlaces de hidrógeno se forman entre átomos de oxígeno esqueletales y átomos de hidrógeno amida. Cuando el espaciamiento de los residuos de aminoácido que participan en un enlace de hidrógeno es regular entre las posiciones i e i + 4, se forma una hélice alfa. Cuando el espaciamiento es menor, entre las posiciones i e i + 3, se forma una hélice 310. Cuando dos cadenas se unen por enlaces de hidrógeno que involucran residuos alternantes de cada cadena participante, se forma una lámina beta. Los enlaces de hidrógeno también toman parte en la formación de la estructura terciaria de las proteínas, a través de la interacción de los grupos R.(Ver también plegamiento de proteínas).


Enlace de hidrógeno simétrico

Un enlace de hidrógeno simétrico es un tipo especial de enlace de hidrógeno en el que el núcleo de hidrógeno está exactamente a mitad de camino entre dos átomos del mismo elemento. La fuerza del enlace a cada uno de estos átomos es igual. Constituye un ejemplo de un enlace de tres centros y dos electrones. Este tipo de enlace es mucho más fuerte que los enlaces de hidrógeno "normales". El orden efectivo de enlace es 0.5, así que su fuerza es comparable a un enlace covalente. Se ha visto en hielo a altas presiones, y también en la fase sólida de muchos ácidos anhidros, como el fluoruro de hidrógeno y el ácido fórmico a altas presiones. También se le ha visto en el anión bifluoruro [F-H-F].

Los enlaces de hidrógeno simétricos han sido observados recientemente espectroscópicamente en el ácido fórmico a presión alta (>GPa). Cada átomo de hidrógeno forma un enlace covalente parcial con dos átomos, en vez de con uno. Se ha postulado la existencia de enlaces de hidrógeno simétricos en el hielo a altas presiones (Hielo X). Se forman bajas barreras de enlace de hidrógeno cuando la distancia entre dos heteroátomos es muy pequeña.
































































































Enlace de dihidrógeno


El enlace de hidrógeno puede ser comparado con el cercanamente relacionadoenlace de dihidrógeno, que también es una interacción enlazanteintermolecular que involucra a átomos de hidrógeno. Estas estructuras han sido conocidas por algún tiempo, y bien caracterizadas por cristalografía de rayos X; sin embargo, una comprensión de su relación con el enlace de hidrógeno convencional, enlace iónico y enlace covalente permanece oscura. Generalmente, el enlace de hidrógeno está caracterizado por un aceptor de protones, que es un par libre de electrones en átomos no metálicos (principalmente en el nitrógeno y oxígeno). En algunos casos, estos aceptores de protones pueden ser orbitales pi o algún complejo metálico. Sin embargo, en el enlace de dihidrógeno, un hidruro metálico sirve como aceptor de protones; formando una interacción hidrógeno-hidrógeno.

La difracción de neutrones ha mostrado que la geometría molecular de estos complejos es similar a los enlaces de hidrógeno, en el que la longitud de enlace se adapta muy bien a los sistemas complejo metálico/donante de hidrógeno.
































































Teoría avanzada del enlace de hidrógeno



Recientemente, la naturaleza del enlace fue elucidada. Un artículo ampliamente publicado probó, a partir de interpretaciones de anisotropía en el perfil de Compton del hielo ordinario, que el enlace de hidrógeno es parcialmente covalente. Parte de la información de resonancia magnética nuclear sobre los enlaces de hidrógeno en las proteínas también indica que hay enlace covalente.

Más generalmente, el enlace de hidrógeno puede ser visto como un campo escalar electrostático dependiente de la métrica, entre dos o más enlaces intermoleculares. Esto es ligeramente diferente de los estados ligadosintramoleculares de, por ejemplo, el enlace covalente o el enlace iónico; sin embargo, el enlace de hidrógeno sigue siendo un fenómeno de estado ligado, puesto que la energia de interacción tiene una suma neta negativa. La teoría inicial del enlace de hidrógeno propuesta por Linus Pauling sugería que los enlaces de hidrógeno tenían una naturaleza parcialmente covalente. Esto permaneció como una conclusión controversial hasta finales de la década de 1990, cuando mediante técnicas de RMN empleadas por F. Cordier et al. para transferir información entre núcleos enlazados por hidrógeno, una característica que sólo sería posible si el enlace de hidrógeno contuviera algún carácter covalente.


Fenómenos debidos al enlace de hidrógeno

  • Punto de ebullición dramáticamente alto del NH3, H2O y HF, en comparación a los análogos más pesados PH3, H2S, y HCl
  • Viscosidad del ácido fosfórico anhidro y del glicerol.
  • Formación de dímeros en ácidos carboxílicos y de hexámeros en el fluoruro de hidrógeno, que ocurre incluso en la fase gaseosa, resultando en grandes desviaciones de la ley de los gases ideales.
  • La alta solubilidad en agua de muchos compuestos como el amoníaco es explicada por el enlace de hidrógeno con las moléculas de agua.
  • La azeotropía negativa de mezclas de HF y agua.
  • La delicuescencia del NaOH es causada, en parte, por la reacción de OH-con la humedad para formar especies H3O2- enlazadas por hidrógeno. Un proceso análogo sucede entre NaNH2 y NH3, y entre NaF y HF.
  • El hecho de que el hielo es menos denso que el agua líquida se debe a una estructura cristalina estabilizada por enlaces de hidrógeno.
  • La presencia de enlaces de hidrógeno puede causar una anomalía en la sucesión normal de los estados de agregación para ciertas mezclas decompuestos químicos, con el incremento o disminución de temperatura. Estos compuestos pueden ser líquidos hasta una cierta temperatura, luego son sólidos incluso con el incremento de temperatura, y finalmente líquidos cuando la temperatura se eleva sobre el "intervalo anómalo"12
  • La goma inteligente utiliza enlaces de hidrógeno como su única forma de enlace, así que puede "sanarse" cuando se pincha, debido a que puede aparecer nuevos enlaces de hidrógeno entre las dos superficies del mismo polímero.

Un enlace de hidrógeno es la fuerza atractiva entre un átomoelectronegativo y un átomo de hidrógenounido covalentementea otro átomo electronegativo. Resulta de la formación de unafuerza dipolo-dipolocon un átomo de hidrógeno unido a un átomo de nitrógeno,oxígeno o flúor (de ahí el nombre de "enlace de hidrógeno", que no debe confundirse con un enlace covalente a átomos de hidrógeno). La energía de un enlace de hidrógeno (típicamente de 5 a 30 kJ/mol) es comparable a la de los enlaces covalentes débiles (155 kJ/mol), y un enlace covalente típico es sólo 20 veces más fuerte que un enlace de hidrógeno intermolecular. Estos enlaces pueden ocurrir entre moléculas (intermolecularidad), o entre diferentes partes de una misma molécula (intramolecularidad).2 El enlace de hidrógeno es una fuerza de van der Waalsdipolo-dipolo fija muy fuerte, pero más débil que el enlace covalente o el enlace iónico. El enlace de hidrógeno está en algún lugar intermedio entre un enlace covalente y una simple atracción electrostática intermolecular. Este tipo de enlace ocurre tanto en moléculas inorgánicas tales como el agua, y enmoléculas orgánicas como el ADN.

El enlace de hidrógeno intermolecular es responsable del punto de ebulliciónalto del agua (100°C). Esto es debido al fuerte enlace de hidrógeno, en contraste a los otros hidruros de calcógenos. El enlace de hidrógeno intramolecular es responsable parcialmente de la estructura secundaria,estructura terciaria y estructura cuaternaria de las proteínas y ácidos nucleicos.


FUERZAS DIPOLO-DIPOLO



Una atracción dipolo-dipolo es una interacción no covalente entre dos moléculas polares o dos grupos polares de la misma molécula si ésta es grande. En la sección anterior explicamos cómo se forman moléculas que contienen dipolos permanentes cuando se enlazan simétricamente con átomos con electronegatividad diferente. Las moléculas que son dipolos se atraen entre sí cuando la región positiva de una está cerca de la región negativa de la otra entre moléculas de BrCl.

En un líquido las moléculas están muy cercanas entre sí y se atraen por sus fuerzas intermoleculares. Las moléculas deben tener suficiente energía para vencer esas fuerzas de atracción, y hacer que el líquido pueda entrar en ebullición. Si se requiere más energía para vencer las atracciones de las moléculas del líquido A que aquéllas entre las moléculas del líquido B, el punto de ebullición de A es más alto que el de B. Recíprocamente, menores atracciones intermoleculares dan pie a puntos de ebullición más bajos.
5.2.3.Puentes de hidrógeno.
Es un tipo especial de interacción dipolo-dipolo entre el átomo de hidrógeno que está formando un enlace polar, tal como N—H, O—H, ó F—H, y un átomo electronegativo como O, N ó F. Esta interacción se representa de la forma siguiente:
A—H•••B A—H•••A
A y B representan O, N ó F; A—H es una molécula o parte de una molécula y B es parte de otra. La línea de puntos representa el enlace de hidrógeno.
La energía media de un enlace de hidrógeno es bastante grande para ser una interacción dipolo-dipolo (mayor de 40 KJ/mol). Esto hace que el enlace de hidrógeno sea una de gran importancia a la hora de la adopción de determinadas estructuras y en las propiedades de muchos compuestos.
Las primeras evidencias de la existencia de este tipo de interacción vinieron del estudio de los puntos de ebullición. Normalmente, los puntos de ebullición de compuestos que contienen a elementos del mismo grupo aumentan con el peso molecular. Pero, como se puede observar en la Figura 6, los compuestos de los elementos de los Grupos 15, 16 y 17 no siguen esta norma. Para cada uno de los grupos, los compuestos de menos peso molecular (NH3, H2O, HF) tienen el punto de ebullición más alto, en contra de lo que se podría esperar en principio. Ello es debido a que existe algún tipo de interacción entre las moléculas en estado líquido que se opone al paso al estado de vapor. Esa interacción es el enlace de hidrógeno, y afecta a los primeros miembros de la serie pues son los más electronegativos, y por ello el enlace X-H es el más polarizado, lo que induce la mayor interacción por puente de hidrógeno.
Los puentes de hidrógeno son especialmente fuertes entre las moléculas de agua y son la causa de muchas de las singulares propiedades de esta sustancia. Los compuestos de hidrógeno de elementos vecino al oxígeno y de los miembros de su familia en la tabla periódica, son gases a la temperatura ambiente: CH4, NH3, H2S, H2Te, PH3, HCl. En cambio, el H2O es líquida a la temperatura ambiente, lo que indica un alto grado de atracción intermolecular. En la figura 6 se puede ver que el punto de ebullición del agua es 200 ºC más alto de lo que cabría predecir si no hubiera puentes de hidrógeno. Los puentes de hidrógeno juegan también un papel crucial en la estructura del ADN, la molécula que almacena la herencia genética de todos los seres vivos.
Cuadro de texto:
Variación de los puntos de ebullición de los hidruros moleculares.

No hay comentarios:

Publicar un comentario